Skip to main content
Log in

Combined effect of a spread powder particle size distribution, surface machining and stress-relief heat treatment on microstructure, tensile and fatigue properties of 316L steel manufactured by laser powder bed fusion

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Additive manufacturing is a powerful process to build complex geometry. Besides the numerous process parameters influencing the mechanical part performances, other parameters related to the initial powder feedstock or component machining are of most importance. In this study, the combined effect of a wide particle size distribution, surface machining and stress-relief heat treatment on the microstructure and mechanical properties (tension and fatigue) of a stainless steel AISI 316L, produced by laser powder bed fusion, is investigated. In order to correctly investigate those parameters separately, the netshape/machined character of the sample, alongside with the heat treatment, is studied for two kinds of powder having different particle size distributions, i.e. narrow and widely spread. Results show that a large spread of particle size is only slightly detrimental to the fatigue life, in particular in high-cycle conditions due to a larger porosity related to a weakly more uneven particle spatial distribution in the bed. Nevertheless, this effect is of a second order compared to machining or heat treatments which greatly affect the mechanical behaviour. Surface machining and moderate heat treatment are then the best post-operational steps to increase the fatigue life in high-cycle fatigue conditions independently of the particle size distribution. Results are discussed in terms of defects, microstructural modifications, surface roughness, martensitic transformation and mechanical loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared as the data also forms part of an ongoing study.

References

  1. DebRoy T, Wei HL, Zuback JS, Mukherjee T, Elmer JW, Milewski JO, Beese AM, Wilson-Heid A, De A, Zhang W (2018) Additive manufacturing of metallic components – process, structure and properties. Prog Mater Sci 92:112–224. https://doi.org/10.1016/j.pmatsci.2017.10.001

    Article  CAS  Google Scholar 

  2. Zhao C, Fezzaa K, Cunningham RW, Wen H, De Carlo F, Chen L, Rollett AD, Sun T (2017) Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction. Sci Rep 7:3602. https://doi.org/10.1038/s41598-017-03761-2

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  3. Leicht A, Klement U, Hryha E (2018) Effect of build geometry on the microstructural development of 316L parts produced by additive manufacturing. Mater Charact 143:137–143. https://doi.org/10.1016/j.matchar.2018.04.040

    Article  CAS  Google Scholar 

  4. Yan F, Xiong W, Faierson E, Olson GB (2018) Characterization of nano-scale oxides in austenitic stainless steel processed by powder bed fusion. Scr Mater 155:104–108. https://doi.org/10.1016/j.scriptamat.2018.06.011

    Article  CAS  Google Scholar 

  5. Sun Z, Tan X, Tor SB, Chua CK (2018) Simultaneously enhanced strength and ductility for 3D-printed stainless steel 316L by selective laser melting. NPG Asia Mater 10:127–136. https://doi.org/10.1038/s41427-018-0018-5

    Article  CAS  Google Scholar 

  6. Wang X, Muñiz-Lerma JA, Sánchez-Mata O, Attarian Shandiz M, Brochu M (2018) Microstructure and mechanical properties of stainless steel 316L vertical struts manufactured by laser powder bed fusion process. Mater Sci Eng A 736:27–40. https://doi.org/10.1016/j.msea.2018.08.069

    Article  CAS  Google Scholar 

  7. Ahmadi A, Mirzaeifar R, Moghaddam NS, Turabi AS, Karaca HE, Elahinia M (2016) Effect of manufacturing parameters on mechanical properties of 316L stainless steel parts fabricated by selective laser melting: A computational framework. Mater Des 112:328–338. https://doi.org/10.1016/j.matdes.2016.09.043

    Article  CAS  Google Scholar 

  8. Tucho WM, Lysne VH, Austbø H, Sjolyst-Kverneland A, Hansen V (2018) Investigation of effects of process parameters on microstructure and hardness of SLM manufactured SS316L. J Alloys Compd 740:910–925. https://doi.org/10.1016/j.jallcom.2018.01.098

    Article  CAS  Google Scholar 

  9. Gu D, Shen Y (2008) Processing conditions and microstructural features of porous 316L stainless steel components by DMLS. Appl Surf Sci 255:1880–1887. https://doi.org/10.1016/j.apsusc.2008.06.118

    Article  CAS  ADS  Google Scholar 

  10. Liverani E, Toschi S, Ceschini L, Fortunato A (2017) Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel. J Mater Process Technol 249:255–263. https://doi.org/10.1016/j.jmatprotec.2017.05.042

    Article  CAS  Google Scholar 

  11. Shrestha R, Simsiriwong J, Shamsaei N (2019) Fatigue behavior of additive manufactured 316L stainless steel parts: effects of layer orientation and surface roughness. Additive Manufacturing 28:23–38. https://doi.org/10.1016/j.addma.2019.04.011

    Article  CAS  Google Scholar 

  12. Kurzynowski T, Gruber K, Stopyra W, Kuźnicka B, Chlebus E (2018) Correlation between process parameters, microstructure and properties of 316 L stainless steel processed by selective laser melting. Mater Sci Eng A 718:64–73. https://doi.org/10.1016/j.msea.2018.01.103

    Article  CAS  Google Scholar 

  13. Afkhami S, Dabiri M, Alavi SH, Björk T, Salminen A (2019) Fatigue characteristics of steels manufactured by selective laser melting. Int J Fatigue 122:72–83. https://doi.org/10.1016/j.ijfatigue.2018.12.029

    Article  CAS  Google Scholar 

  14. Elangeswaran C, Cutolo A, Muralidharan GK, de Formanoir C, Berto F, Vanmeensel K, Van Hooreweder B (2019) Effect of post-treatments on the fatigue behaviour of 316L stainless steel manufactured by laser powder bed fusion. Int J Fatigue 123:31–39. https://doi.org/10.1016/j.ijfatigue.2019.01.013

    Article  CAS  Google Scholar 

  15. Blinn B, Krebs F, Ley M, Teutsch R, Beck T (2020) Determination of the influence of a stress-relief heat treatment and additively manufactured surface on the fatigue behavior of selectively laser melted AISI 316L by using efficient short-time procedures. Int J Fatigue 131:105301. https://doi.org/10.1016/j.ijfatigue.2019.105301

  16. Liang X, Robert C, Hor A, Morel F (2021) Numerical investigation of the surface and microstructure effects on the high cycle fatigue performance of additive manufactured stainless steel 316L. Int J Fatigue 149:106273. https://doi.org/10.1016/j.ijfatigue.2021.106273

  17. Afkhami S, Dabiri M, Piili H, Björk T (2021) Effects of manufacturing parameters and mechanical post-processing on stainless steel 316L processed by laser powder bed fusion. Mater Sci Eng A 802:140660. https://doi.org/10.1016/j.msea.2020.140660

  18. AL-Mangour B, Vo P, Mongrain R, Irissou E, Yue S (2014) Effect of heat treatment on the microstructure and mechanical properties of stainless steel 316L coatings produced by cold spray for biomedical applications. J Therm Spray Tech 23:641–652. https://doi.org/10.1007/s11666-013-0053-2

    Article  CAS  ADS  Google Scholar 

  19. Ronneberg T, Davies CM, Hooper PA (2020) Revealing relationships between porosity, microstructure and mechanical properties of laser powder bed fusion 316L stainless steel through heat treatment. Mater Des 189:108481. https://doi.org/10.1016/j.matdes.2020.108481

  20. H. Gu, H. Gong, J. J. S Dilip, D. Pal, A. Hicks, H. Doak, B. Stucker, Effects of powder variation on the microstructure and tensile strength of Ti6Al4V parts fabricated by selective laser melting, 2014.

    Google Scholar 

  21. Thomas M, De Terris T, Drawin S (2017) Impact des caractéristiques des poudres sur les propriétés des matériaux métalliques élaborés par fabrication additive. Traitements et Matériaux 447:22–31

    Google Scholar 

  22. Pleass C, Jothi S (2018) Influence of powder characteristics and additive manufacturing process parameters on the microstructure and mechanical behaviour of Inconel 625 fabricated by Selective Laser Melting. Additive Manufacturing 24:419–431. https://doi.org/10.1016/j.addma.2018.09.023

    Article  CAS  Google Scholar 

  23. Slotwinski J, Garboczi E, Stutzman P, Ferraris C, Watson S, Peltz M (2014) Characterization of metal powders used for additive manufacturing. J Res Natl Inst Stand Technol 119:460–493. https://doi.org/10.6028/jres.119.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ardila LC, Garciandia F, González-Díaz JB, Álvarez P, Echeverria A, Petite MM, Deffley R, Ochoa J (2014) Effect of IN718 recycled powder reuse on properties of parts manufactured by means of selective laser melting. Phys Procedia 56:99–107. https://doi.org/10.1016/j.phpro.2014.08.152

    Article  ADS  Google Scholar 

  25. Powell D, Rennie AEW, Geekie L, Burns N (2020) Understanding powder degradation in metal additive manufacturing to allow the upcycling of recycled powders. J Clean Prod 268:122077. https://doi.org/10.1016/j.jclepro.2020.122077

  26. Heiden MJ, Deibler LA, Rodelas JM, Koepke JR, Tung DJ, Saiz DJ, Jared BH (2019) Evolution of 316L stainless steel feedstock due to laser powder bed fusion process. Additive Manufacturing 25:84–103. https://doi.org/10.1016/j.addma.2018.10.019

    Article  CAS  Google Scholar 

  27. Quinn P, O’Halloran S, Lawlor J, Raghavendra R (2019) The effect of metal EOS 316L stainless steel additive manufacturing powder recycling on part characteristics and powder reusability. Advances in Materials and Processing Technologies 5:348–359. https://doi.org/10.1080/2374068X.2019.1594602

    Article  Google Scholar 

  28. Hann BA (2016) Powder reuse and its effects on laser based powder fusion additive manufactured alloy 718. SAE Int J Aerosp 9:209–213. https://doi.org/10.4271/2016-01-2071

    Article  Google Scholar 

  29. Quintana OA, Alvarez J, Mcmillan R, Tong W, Tomonto C (2018) Effects of reusing Ti-6Al-4V powder in a selective laser melting additive system operated in an industrial setting. JOM. 70:1863–1869. https://doi.org/10.1007/s11837-018-3011-0

    Article  CAS  Google Scholar 

  30. Tang HP, Qian M, Liu N, Zhang XZ, Yang GY, Wang J (2015) Effect of powder reuse times on additive manufacturing of Ti-6Al-4V by selective electron beam melting. JOM. 67:555–563. https://doi.org/10.1007/s11837-015-1300-4

    Article  CAS  Google Scholar 

  31. Paccou E, Mokhtari M, Keller C, Nguejio J, Lefebvre W, Sauvage X, Boileau S, Babillot P, Bernard P, Bauster E (2021) Investigations of powder reusing on microstructure and mechanical properties of Inconel 718 obtained by additive manufacturing. Mater Sci Eng A 828:142113. https://doi.org/10.1016/j.msea.2021.142113

    Article  CAS  Google Scholar 

  32. Liu B, Wildman R, Tuck C, Ashcroft I, Hague R (2011) Investigaztion the effect of particle size distribution on processing parameters optimisation in selective laser melting process, 22nd Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference. SFF 2011

  33. Groarke R, Danilenkoff C, Karam S, McCarthy E, Michel B, Mussatto A, Sloane J, O’Neill A, Raghavendra R, Brabazon D (2020) 316L stainless steel powders for additive manufacturing: relationships of powder rheology, size, size distribution to part properties. Materials. 13:5537. https://doi.org/10.3390/ma13235537

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  34. Spurek MA, Haferkamp L, Weiss C, Spierings AB, Schleifenbaum JH, Wegener K (2022) Influence of the particle size distribution of monomodal 316L powder on its flowability and processability in powder bed fusion. Prog Addit Manuf 7:533–542. https://doi.org/10.1007/s40964-021-00240-z

    Article  Google Scholar 

  35. Spierings AB, Herres N, Levy G (2011) Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts. Rapid Prototyp J 17:195–202. https://doi.org/10.1108/13552541111124770

    Article  Google Scholar 

  36. Spierings AB, Schneider M, Eggenberger R (2011) Comparison of density measurement techniques for additive manufactured metallic parts. Rapid Prototyp J 17:380–386. https://doi.org/10.1108/13552541111156504

    Article  Google Scholar 

  37. Ziri S, Hor A, Mabru C (2022) Combined effect of powder properties and process parameters on the density of 316L stainless steel obtained by laser powder bed fusion. Int J Adv Manuf Technol 120:6187–6204. https://doi.org/10.1007/s00170-022-09160-w

    Article  Google Scholar 

  38. Yakout M, Elbestawi MA, Veldhuis SC (2018) On the characterization of stainless steel 316L parts produced by selective laser melting. Int J Adv Manuf Technol 95:1953–1974. https://doi.org/10.1007/s00170-017-1303-0

    Article  Google Scholar 

  39. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  40. Rouillard V, Sek MA (2000) A frequency domain technique for maintaining resonance condition during sine dwell vibration testing of packages. Packag Technol Sci 13:227–232. https://doi.org/10.1002/pts.520

    Article  Google Scholar 

  41. Joel M (2013) Improving SRTD testing with resonance phase settings, sound & vibration. 47:12–14

  42. Su Q, Pitarresi J, Gharaibeh M, Stewart A, Joshi G, Anselm M (2014) Accelerated vibration reliability testing of electronic assemblies using sine dwell with resonance tracking. In: 2014 IEEE 64th Electronic Components and Technology Conference (ECTC), pp 119–125. https://doi.org/10.1109/ECTC.2014.6897276

    Chapter  Google Scholar 

  43. Röttger A, Geenen K, Windmann M, Binner F, Theisen W (2016) Comparison of microstructure and mechanical properties of 316L austenitic steel processed by selective laser melting with hot-isostatic pressed and cast material. Mater Sci Eng A 678:365–376. https://doi.org/10.1016/j.msea.2016.10.012

    Article  CAS  Google Scholar 

  44. Bahl S, Mishra S, Yazar KU, Kola IR, Chatterjee K, Suwas S (2019) Non-equilibrium microstructure, crystallographic texture and morphological texture synergistically result in unusual mechanical properties of 3D printed 316L stainless steel. Additive Manufacturing 28:65–77. https://doi.org/10.1016/j.addma.2019.04.016

    Article  CAS  Google Scholar 

  45. Scipioni Bertoli U, MacDonald BE, Schoenung JM (2019) Stability of cellular microstructure in laser powder bed fusion of 316L stainless steel. Mater Sci Eng A 739:109–117. https://doi.org/10.1016/j.msea.2018.10.051

    Article  CAS  Google Scholar 

  46. Puppala G, Moitra A, Sathyanarayanan S, Kaul R, Sasikala G, Prasad RC, Kukreja LM (2014) Evaluation of fracture toughness and impact toughness of laser rapid manufactured Inconel-625 structures and their co-relation. Mater Des 59:509–515. https://doi.org/10.1016/j.matdes.2014.03.013

    Article  CAS  Google Scholar 

  47. Yang X, Tang F, Hao X, Li Z (2021) Oxide evolution during the solidification of 316L stainless steel from additive manufacturing powders with different oxygen contents. Metall Mater Trans B Process Metall Mater Process Sci 52:2253–2262. https://doi.org/10.1007/s11663-021-02191-w

    Article  CAS  ADS  Google Scholar 

  48. Tascioglu E, Karabulut Y, Kaynak Y (2020) Influence of heat treatment temperature on the microstructural, mechanical, and wear behavior of 316L stainless steel fabricated by laser powder bed additive manufacturing. Int J Adv Manuf Technol 107:1947–1956. https://doi.org/10.1007/s00170-020-04972-0

    Article  Google Scholar 

  49. O.O. Salman, C. Gammer, A.K. Chaubey, J. Eckert, S. Scudino, Effect of heat treatment on microstructure and mechanical properties of 316L steel synthesized by selective laser melting, Mater Sci Eng A 748 (2019) 205–212. https://doi.org/10.1016/j.msea.2019.01.110.

  50. Sitarama Raju K, Ghanashyam Krishna M, Padmanabhan KA, Subramanya Sarma V, Gurao NP, Wilde G (2011) Microstructure evolution and hardness variation during annealing of equal channel angular pressed ultra-fine grained nickel subjected to 12 passes. J Mater Sci 46:2662–2671. https://doi.org/10.1007/s10853-010-5122-z

    Article  CAS  ADS  Google Scholar 

  51. Marnier G, Keller C, Taleb L (2016) Tensile prestrain memory effect on subsequent cyclic behavior of FCC metallic materials presenting different dislocations slip modes. Int J Plast 78:64–83. https://doi.org/10.1016/j.ijplas.2015.11.001

    Article  CAS  Google Scholar 

  52. Yu C-H, Leicht A, Luzin V, Busi M, Polatidis E, Strobl M, Lin Peng R, Moverare JJ (2022) Effect of stress relief heat treatment on low cycle fatigue behaviours of Lpbf Stainless Steel 316l. https://doi.org/10.2139/ssrn.4159502

    Book  Google Scholar 

  53. Marnier G, Keller C, Taleb L (2016) Fatigue of OFHC pure copper and 316L stainless steel subjected to prior tensile and cyclic prestrains. Int J Fatigue 91:204–219. https://doi.org/10.1016/j.ijfatigue.2016.06.009

    Article  CAS  Google Scholar 

  54. Marnier G (2016) Etude des effets de mémoire de pré-écrouissage affectant le comportement mécanique cyclique de matériaux métalliques présentant différents modes de glissement des dislocations, phdthesis. INSA de Rouen https://tel.archives-ouvertes.fr/tel-01480227 (accessed March 31, 2022).

  55. Pegues J, Roach M, Scott Williamson R, Shamsaei N (2018) Surface roughness effects on the fatigue strength of additively manufactured Ti-6Al-4V. Int J Fatigue 116:543–552. https://doi.org/10.1016/j.ijfatigue.2018.07.013

    Article  CAS  Google Scholar 

  56. Hu H, Li Y, Suo T, Zhao F, Miao Y, Xue P, Deng Q (2014) Fatigue behavior of aluminum stiffened plate subjected to random vibration loading. Trans Nonferrous Metals Soc China 24:1331–1336. https://doi.org/10.1016/S1003-6326(14)63196-4

    Article  CAS  Google Scholar 

  57. Zhang J, Fatemi A (2019) Surface roughness effect on multiaxial fatigue behavior of additive manufactured metals and its modeling. Theor Appl Fract Mech 103:102260. https://doi.org/10.1016/j.tafmec.2019.102260

  58. Bayoumi MR, Abdellatif AK (1995) Effect of surface finish on fatigue strength. Eng Fract Mech 51:861–870. https://doi.org/10.1016/0013-7944(94)00297-U

    Article  Google Scholar 

  59. J. Bruns, A. Zearley, T. George, O. Scott-Emuakpor, C. Holycross, Vibration-based bending fatigue of a hybrid insert-plate system, Exp Mech 55 (2015) 1067–1080. https://doi.org/10.1007/s11340-015-0004-6.

  60. Grigorescu AC, Hilgendorff P-M, Zimmermann M, Fritzen C-P, Christ H-J (2016) Cyclic deformation behavior of austenitic Cr–Ni-steels in the VHCF regime: part I – experimental study. Int J Fatigue 93:250–260. https://doi.org/10.1016/j.ijfatigue.2016.05.005

    Article  CAS  Google Scholar 

  61. Hausner HH (1981) Powder characteristics and their effect on powder processing. Powder Technol 30:3–8. https://doi.org/10.1016/0032-5910(81)85021-8

    Article  CAS  Google Scholar 

  62. Sutton AT, Kriewall CS, Leu MC, Newkirk JW (2017) Powder characterisation techniques and effects of powder characteristics on part properties in powder-bed fusion processes. Virtual and Physical Prototyping 12:3–29. https://doi.org/10.1080/17452759.2016.1250605

    Article  Google Scholar 

  63. Voisin T, Forien J-B, Perron A, Aubry S, Bertin N, Samanta A, Baker A, Wang YM (2021) New insights on cellular structures strengthening mechanisms and thermal stability of an austenitic stainless steel fabricated by laser powder-bed-fusion. Acta Mater 203:116476. https://doi.org/10.1016/j.actamat.2020.11.018

    Article  CAS  Google Scholar 

  64. Krakhmalev P, Fredriksson G, Svensson K, Yadroitsev I, Yadroitsava I, Thuvander M, Peng R (2018) Microstructure, solidification texture, and thermal stability of 316 L stainless steel manufactured by laser powder bed fusion. Metals. 8:643. https://doi.org/10.3390/met8080643

    Article  CAS  Google Scholar 

  65. Dehoff RR, Kirka MM, Sames WJ, Bilheux H, Tremsin AS, Lowe LE, Babu SS (2015) Site specific control of crystallographic grain orientation through electron beam additive manufacturing. Mater Sci Technol 31:931–938. https://doi.org/10.1179/1743284714Y.0000000734

    Article  CAS  ADS  Google Scholar 

  66. Fomin, Probabilistic fatigue-life assessment model for laser-welded Ti-6Al-4V butt joints in the high-cycle fatigue regime - ScienceDirect, (n.d.). https://www.sciencedirect.com/science/article/pii/S0142112318302305 (accessed March 31, 2022).

  67. Hu, The effect of manufacturing defects on the fatigue life of selective laser melted Ti-6Al-4V structures - ScienceDirect, (n.d.). https://www.sciencedirect.com/science/article/pii/S0264127520302422 (accessed March 31, 2022).

  68. Serrano-Munoz I, Buffiere J-Y, Mokso R, Verdu C, Nadot Y (2017) Location, location & size: defects close to surfaces dominate fatigue crack initiation. Sci Rep 7:45239. https://doi.org/10.1038/srep45239

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  69. Liu L, Ding Q, Zhong Y, Zou J, Wu J, Chiu Y-L, Li J, Zhang Z, Yu Q, Shen Z (2018) Dislocation network in additive manufactured steel breaks strength–ductility trade-off. Mater Today 21:354–361. https://doi.org/10.1016/j.mattod.2017.11.004

    Article  CAS  ADS  Google Scholar 

  70. Merot P, Morel F, Gallegos Mayorga L, Pessard E, Buttin P, Baffie T (2022) Observations on the influence of process and corrosion related defects on the fatigue strength of 316L stainless steel manufactured by Laser Powder Bed Fusion (L-PBF). Int J Fatigue 155:106552. https://doi.org/10.1016/j.ijfatigue.2021.106552

  71. Ni X, Kong D, Wu W, Zhang L, Dong C (2021) Deformation-induced martensitic transformation in 316L stainless steels fabricated by laser powder bed fusion. Mater Lett 302:130377. https://doi.org/10.1016/j.matlet.2021.130377

Download references

Acknowledgements

Yan Duval is acknowledged for the help on the fatigue data treatment. Sebastien Vernay from Normandy Aerospace is also acknowledged for the administrative support on the CLIP FAM project.

Code availability

Not applicable

Funding

The Normandy Region and European Union (European Regional Development Fund) are greatly acknowledged for the financial support of the CLIP FAM project.

Author information

Authors and Affiliations

Authors

Contributions

J. Ngeijio: conceptualisation, investigation, writing and editing. M. Mokhari: conceptualisation, investigation, writing and editing, E. Paccou: investigation. E. Bauster: conceptualisation. L. Khalij: investigation, writing and editing. E. Hug: conceptualisation, writing and editing. P. Bernard: conceptualisation. S. Boileau: conceptualisation, investigation. C. Keller: project supervision, conceptualisation, investigation, writing and editing.

Corresponding author

Correspondence to Clément Keller.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent to publication

Not applicable.

Competing interest

The authors declare no competing interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguejio, J., Mokhtari, M., Paccou, E. et al. Combined effect of a spread powder particle size distribution, surface machining and stress-relief heat treatment on microstructure, tensile and fatigue properties of 316L steel manufactured by laser powder bed fusion. Int J Adv Manuf Technol 131, 563–583 (2024). https://doi.org/10.1007/s00170-023-11008-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-11008-w

Keywords

Navigation