Skip to main content
Log in

Adsorption and motion characteristics of charged droplet on sawtooth surfaces and machinability evaluation

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In high-speed sawing, the penetration of cutting fluid is limited due to the narrow kerf and large cutting depth. To improve the machining performance of high-speed sawing and the lubrication and cooling efficiency of cutting fluid, a technology named electrostatic minimum quantity lubrication (EMQL) high-speed sawing with water-based nanofluid as cutting fluids was developed. The adsorption and motion characteristics of droplets on the solid surface under airflow were studied. Furthermore, the machinability of EMQL in high-speed sawing was explored. The results show that the charged droplet’s surface tension, static contact angle, and velocity under tangential airflow are lower than those of the uncharged droplet, while the dynamic contact angle hysteresis is higher. This indicates that the adsorbability of charged droplets on solid surface is enhanced. In high-speed sawing processing, the principal sawing force is reduced by 19% when the fluid is charged at − 4 kV. The reason may be that charging reduces the drag force of the droplet and increases the capillary force generated by the deformation of the contact line between the droplet and the solid surface, which enhances the adsorption capacity of the charged droplets on the sawtooth surfaces and improves the lubrication performance of the sawing area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Code availability

Not applicable.

References

  1. Brinksmeier E, Meyer D, Huesmann-Cordes AG, Herrmann C (2015) Metalworking fluids-mechanisms and performance. CIRP Ann Manuf Technol 64:605–628. https://doi.org/10.1016/j.cirp.2015.05.003

    Article  Google Scholar 

  2. Gupta MK, Khan AM, Song Q, Liu Z, Khalid QS, Jamil M, Kuntoğlu M, Usca ÜA, Sarıkaya M, Pimenov DY (2021) A review on conventional and advanced minimum quantity lubrication approaches on performance measures of grinding process. J Adv Manuf Technol 117:729–750. https://doi.org/10.1007/s00170-021-07785-x

    Article  Google Scholar 

  3. Kui GWA, Islam S, Reddy MM, Khandoker N, Chen VLC (2022) Recent progress and evolution of coolant usages in conventional machining methods: a comprehensive review. J Adv Manuf Technol 119:3–40. https://doi.org/10.1007/s00170-021-08182-0

    Article  Google Scholar 

  4. Ni J, Chen Y, Meng Z, Feng G, Xu J (2018) Study on sawing characteristics of band saw for metal under ultrasonic water mist. China Mech Eng 29:2081–2086. https://doi.org/10.3969/j.issn.1004-132X.2018.17.010

    Article  Google Scholar 

  5. Huang S, Lv T, Xu X, Ma Y, Wang M (2018) Experimental evaluation on the effect of electrostatic minimum quantity lubrication (EMQL) in end milling of stainless steels. Mach Sci Technol 22:271–286. https://doi.org/10.1080/10910344.2017.1337135

    Article  Google Scholar 

  6. Maruda RW, Krolczyk GM, Feldshtein E, Pusavec F, Szydlowski M, Legutko S, Sobczak-Kupiec A (2016) A study on droplets sizes, their distribution and heat exchange for minimum quantity cooling lubrication (MQCL). Int J Mach Tools Manuf 100:81–92. https://doi.org/10.1016/j.ijmachtools.2015.10.008

    Article  Google Scholar 

  7. Park K-H, Olortegui-Yume J, Yoon M-C, Kwon P (2010) A study on droplets and their distribution for minimum quantity lubrication (MQL). Int J Mach Tools Manuf 50:824–833. https://doi.org/10.1016/j.ijmachtools.2010.05.001

    Article  Google Scholar 

  8. Dongzhou J, Changhe L, Sheng W, Qiang Z (2014) Investigation into distributing characteristic of suspend particulate in MQL grinding. Manuf Technol Mach Tool 2:58–61. https://doi.org/10.3969/j.issn.1005-2402.2014.02.019

    Article  Google Scholar 

  9. Yeganehdoust F, Amer A, Sharifi N, Karimfazli I, Dolatabadi A (2021) Droplet mobility on slippery lubricant impregnated and superhydrophobic surfaces under the effect of air shear flow. Langmuir 37:6278–6291. https://doi.org/10.1021/acs.langmuir.1c00726

    Article  Google Scholar 

  10. Fan J, Wilson MCT, Kapur N (2011) Displacement of liquid droplets on a surface by a shearing air flow. J Colloid Interface Sci 356:286–292. https://doi.org/10.1016/j.jcis.2010.12.087

    Article  Google Scholar 

  11. Li H, Yan T, Fichthorn KA, Yu S (2018) Dynamic contact angles and mechanisms of motion of water droplets moving on nanopillared superhydrophobic surfaces: a molecular dynamics simulation study. Langmuir 34:9917–9926. https://doi.org/10.1021/acs.langmuir.8b01324

    Article  Google Scholar 

  12. Chibowski E (2007) On some relations between advancing, receding and Young’s contact angles. Adv Colloid Interface Sci 133:51–59. https://doi.org/10.1016/j.cis.2007.03.002

    Article  Google Scholar 

  13. Fang C, Hidrovo C, Wang F-M, Eaton J, Goodson KE (2008) 3-D numerical simulation of contact angle hysteresis for microscale two phase flow. Int J Multiphase Flow 34:690–705. https://doi.org/10.1016/j.ijmultiphaseflow.2007.08.008

    Article  Google Scholar 

  14. Butt H-J, Liu J, Koynov K, Straub B, Hinduja C, Roismann I, Berger R, Li X, Vollmer D, Steffen W, Kappl M (2022) Contact angle hysteresis. Curr Opin Colloid Interface Sci 59. https://doi.org/10.1016/j.cocis.2022.101574

  15. Eral HB (2013) T Mannetje D J C M, Oh J M, Contact angle hysteresis: a review of fundamentals and applications. Colloid Polym Sci 291:247–260. https://doi.org/10.1007/s00396-012-2796-6

    Article  Google Scholar 

  16. Durbin PA (1988) On the wind force needed to dislodge a drop adhered to a surface. J Fluid Mech 196:205–222. https://doi.org/10.1017/S0022112088002678

    Article  MATH  Google Scholar 

  17. Peng SJ, Williams RA (1998) Controlled production of emulsions using a crossflow membrane. Part Part Syst Charact 15:21–25. https://doi.org/10.1002/(SICI)1521-4117(199802)15:1%3c21::AID-PPSC21%3e3.0.CO;2-T

    Article  Google Scholar 

  18. Van Dussan EB (1987) On the ability of drops to stick to surfaces of solids III The influences of the motion of the surrounding fluid on dislodging drops. J Fluid Mech 174:381–397. https://doi.org/10.1017/s002211208700017x

    Article  MATH  Google Scholar 

  19. Wang H, Wu J, Du Y, Wang D (2019) Investigation on the atomization characteristics of a solid-cone spray for dust reduction at low and medium pressures. Adv Powder Technol 30:903–910. https://doi.org/10.1016/j.apt.2019.02.004

    Article  Google Scholar 

  20. Zhang S, Zhang C, Shi W, Lu Y, Chen J (2018) Investigation of oil droplet coverage rate and droplet size distribution under minimum quantity lubrication condition. Chin J Mech Eng 54:169–177. https://doi.org/10.3901/JME.2018.03.169

    Article  Google Scholar 

  21. Huang S, Wang Z, Yao W, Xu X (2015) Tribological evaluation of contact-charged electrostatic spray lubrication as a new near-dry machining technique. Tribol Int 91:74–84. https://doi.org/10.1016/j.triboint.2015.06.029

    Article  Google Scholar 

  22. Dongzhou J, Bo L, Naiqing Z, Zongming Z, Xuping W, Yanbin Z, Cong M, Changhe L (2021) Particle size distribution characteristics of electrostatic minimum quantity lubrication and grinding surface quality evaluation Diam. Diamond Abras Eng 41:89–95. https://doi.org/10.13394/j.cnki.jgszz.2021.3.0013

    Article  Google Scholar 

  23. Xu W, Li C, Zhang Y, Ali HM, Sharma S, Li R, Yang M, Gao T, Liu M, Wang X, Said Z, Liu X, Zhou Z (2022) Electrostatic atomization minimum quantity lubrication machining: from mechanism to application. Int J Extreme Manuf 4:042003. https://doi.org/10.1088/2631-7990/ac9652

    Article  Google Scholar 

  24. Huang S, Yao W, Hu J, Xu X (2015) Tribological performance and lubrication mechanism of contact-charged electrostatic spray lubrication technique. Tribol Lett 59. https://doi.org/10.1007/s11249-015-0559-5

  25. Lu T, Huang S, Hu X, Feng B, Xu X (2019) Study on aerosol characteristics of electrostatic minimum quantity lubrication and its turning performance. Chin J Mech Eng 55:139–148. https://doi.org/10.3901/JME.2019.01.129

    Article  Google Scholar 

  26. Jia D, Zhang Y, Li C, Yang M, Gao T, Said Z, Sharma S (2022) Lubrication-enhanced mechanisms of titanium alloy grinding using lecithin biolubricant. Tribol Int 169. https://doi.org/10.1016/j.triboint.2022.107461

  27. Di Natale F, Carotenuto C, D’addio L, Jaworek A, Krupa A, Szudyga M, Lancia A (2015) Capture of fine and ultrafine particles in a wet electrostatic scrubber. J Environ Chem Eng 3:349–356. https://doi.org/10.1016/j.jece.2014.11.007

    Article  Google Scholar 

  28. Appah S, Wang P, Ou M, Gong C, Jia W (2019) Review of electrostatic system parameters, charged droplets characteristics and substrate impact behavior from pesticides spraying. Int J Agric Biol Eng 12:1–9. https://doi.org/10.25165/j.ijabe.20191202.4673

    Article  Google Scholar 

  29. Yin Q, Li C, Dong L, Bai X, Zhang Y, Yang M, Jia D, Li R, Liu Z (2021) Effects of physicochemical properties of different base oils on friction coefficient and surface roughness in MQL milling AISI 1045. Int J Pr Eng Man-GT 8:1629–1647. https://doi.org/10.1007/s40684-021-00318-7

    Article  Google Scholar 

  30. Debnath S, Reddy MM, Yi QS (2014) Environmental friendly cutting fluids and cooling techniques in machining: a review. J Clean Prod 83:33–47. https://doi.org/10.1016/j.jclepro.2014.07.071

    Article  Google Scholar 

  31. Li B, Li C, Zhang Y, Wang Y, Jia D, Yang M (2016) Grinding temperature and energy ratio coefficient in MQL grinding of high-temperature nickel-base alloy by using different vegetable oils as base oil. Chin J Aeronaut 29:1084–1095. https://doi.org/10.1016/j.cja.2015.10.012

    Article  Google Scholar 

  32. Zhang Y, Li C, Jia D, Li B, Wang Y, Yang M, Hou Y, Zhang X (2016) Experimental study on the effect of nanoparticle concentration on the lubricating property of nanofluids for MQL grinding of Ni-based alloy. J Mater Process Technol 232:100–115. https://doi.org/10.1016/j.jmatprotec.2016.01.031

    Article  Google Scholar 

  33. Wang Y, Li C, Zhang Y, Yang M, Li B, Dong L, Wang J (2018) Processing characteristics of vegetable oil-based nanofluid MQL for grinding different workpiece materials. Int J Pr Eng Man-GT 5:327–339. https://doi.org/10.1007/s40684-018-0035-4

    Article  Google Scholar 

  34. Gao T, Li C, Zhang Y, Yang M, Jia D, Jin T, Hou Y, Li R (2019) Dispersing mechanism and tribological performance of vegetable oil-based CNT nanofluids with different surfactants. Tribol Int 131:51–63. https://doi.org/10.1016/j.triboint.2018.10.025

    Article  Google Scholar 

  35. Yang M, Li C, Luo L, Li R, Long Y (2021) Predictive model of convective heat transfer coefficient in bone micro-grinding using nanofluid aerosol cooling. Int Commun Heat Mass Transfer 125:105317. https://doi.org/10.1016/j.icheatmasstransfer.2021.105317

    Article  Google Scholar 

  36. Sharma AK, Tiwari AK, Dixit AR (2015) Progress of nanofluid application in machining: a review. Mater Manuf Process 30:813–828. https://doi.org/10.1080/10426914.2014.973583

    Article  Google Scholar 

  37. Lv T, Huang S, Hu X, Ma Y, Xu X (2018) Tribological and machining characteristics of a minimum quantity lubrication (MQL) technology using GO/SiO2 hybrid nanoparticle water-based lubricants as cutting fluids. Int J Adv Manuf Technol 96:2931–2942. https://doi.org/10.1007/s00170-018-1725-3

    Article  Google Scholar 

  38. Lee B-B, Ravindra P, Chan E-S (2008) A critical review: surface and interfacial tension measurement by the drop weight method. Chem Eng Commun 195:889–924. https://doi.org/10.1080/00986440801905056

    Article  Google Scholar 

  39. Jia D, Li C, Zhang Y, Yang M, Cao H, Liu B, Zhou Z (2022) Grinding performance and surface morphology evaluation of titanium alloy using electric traction bio micro lubricant. Chin J Mech Eng 58:198–211. https://doi.org/10.3901/JME.2022.05.198

    Article  Google Scholar 

  40. Xiaojie C, Yu S (2021) Electrowetting performance research of different lubricants. Lubrication Engineering 46:50-55,64. https://doi.org/10.3969/j.issn.0254-0150.2021.02.008

    Article  Google Scholar 

  41. Huang S, Lv T, Wang M, Xu X (2018) Enhanced machining performance and lubrication mechanism of electrostatic minimum quantity lubrication-EMQL milling process. Int J Adv Manuf Technol 94:655–666. https://doi.org/10.1007/s00170-017-0935-4

    Article  Google Scholar 

  42. Sugiyama K, Sbragaglia M (2008) Linear shear flow past a hemispherical droplet adhering to a solid surface. J Eng Math 62:35–50. https://doi.org/10.1007/s10665-007-9185-z

    Article  MATH  Google Scholar 

  43. Lu H, Xu X, Xie L-S (2019) Wang H-l, Sun G-N, Yang Q, Deformation and crawling of oil drop on solid substrates by shearing liquid. Chem Eng Sci 195:720–729. https://doi.org/10.1016/j.ces.2018.10.017

    Article  Google Scholar 

  44. Gao C, Qi X, Yang R, Su L, Chen S, Li B, Wang L, Huang W (2013) Investigation on droplet formation in T-shaped microchannel, High Power. Laser Part Beams 25:71–76. https://doi.org/10.3788/HPLPB20132501.0071

    Article  Google Scholar 

  45. Weiss J (2003) Static and dynamic interfacial tension analysis. Curr Protoc Food Anal Chem 7:D3.6.1-D3.6.16. https://doi.org/10.1002/0471142913.fad0306s07

    Article  Google Scholar 

  46. Han Y, He L, Wang S, Luo X, Zhou R (2020) Oscillation behaviors of oil droplets adhered on the solid surfaces with different wettability in a laminar flow field. Exp Therm Fluid Sci 114. https://doi.org/10.1016/j.expthermflusci.2020.110057

  47. Surblys D, Leroy F, Yamaguchi Y, Mueller-Plathe F (2018) Molecular dynamics analysis of the influence of Coulomb and van der Waals interactions on the work of adhesion at the solid-liquid interface. J Chem Phys 148. https://doi.org/10.1063/1.5019185

  48. Feng P, Chen D, Peng B, Cao Y (2020) Numerical investigations of water droplet dynamics in micro-channels considering contact angle hysteresis. J. Power Sources 479. https://doi.org/10.1016/j.jpowsour.2020.229104

  49. Zhang Y, Li C, Ji H, Yang X, Yang M, Jia D, Zhang X, Li R, Wang J (2017) Analysis of grinding mechanics and improved predictive force model based on material-removal and plastic-stacking mechanisms. Int J Mach Tools Manuf 122:81–97. https://doi.org/10.1016/j.ijmachtools.2017.06.002

    Article  Google Scholar 

  50. Xu X, Li Y, Yu Y (2003) Force ratio in the circular sawing of granites with a diamond segmented blade. J Mater Process Technol 139:281–285. https://doi.org/10.1016/S0924-0136(03)00236-X

    Article  Google Scholar 

  51. Xu X, Huang S, Wang M, Yao W (2017) A study on process parameters in end milling of AISI-304 stainless steel under electrostatic minimum quantity lubrication conditions. Int J Adv Manuf Technol 90:979–989. https://doi.org/10.1007/s00170-016-9417-3

    Article  Google Scholar 

Download references

Funding

This work was funded by the National Key Research and Development Program of China, grant number 2020YFB2010604; the National Natural Science Foundation of China, grant number 52275468; and the Basic Public Welfare Research Program of Zhejiang Province, grant number Y23E050073.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have contributed to the creation of this manuscript for important intellectual content and approved the final manuscript. Xiaodong Hu: conceptualization, methodology, software, data curation, formal analysis, writing-original draft, writing-review and editing. Junhao Yu: conceptualization, resources, writing-review and editing, supervision. Guoqiang Guo: methodology, writing-review and editing. Yangyu Wang: formal analysis, investigation, methodology. Yangyang Zhao: formal analysis, investigation, methodology, writing-review and editing. Yu Xia: supervision, writing-review and editing. Yaoyun Xu: supervision, writing-review and editing. Ruihong Zhou: supervision, writing-review and editing. Ruochong Zhang: conceptualization, formal analysis, investigation, methodology, supervision, writing-review and editing.

Corresponding author

Correspondence to Ruochong Zhang.

Ethics declarations

Ethics approval

The authors confirm to the work’s novelty and state that it has not been submitted to any other journal.

Consent to participate

The authors give consent to participate.

Consent for publication

The authors give their consent for their work to be published.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Yu, J., Guo, G. et al. Adsorption and motion characteristics of charged droplet on sawtooth surfaces and machinability evaluation. Int J Adv Manuf Technol 124, 3631–3643 (2023). https://doi.org/10.1007/s00170-023-10817-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-10817-3

Keywords

Navigation