Skip to main content
Log in

Optical bonding process of flat panel displays and their critical-to-quality factors

  • Original Article
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Automotive and display manufacturers have been working on several products and production processes to allow automakers to produce the best display systems possible at a competitive cost. One of the production processes that has been receiving attention is the Optical Bonding process. With this process, displays see significant improvements regarding display contrast, enhanced visibility, and readability, as well as other benefits that contribute greatly to display’s durability, and reduce volume and weight. However, optical bonding processes are complex processes, and although they may variate according to several factors, including the type of adhesive, the desired display assembly stack to be built and its requirements; each optical bonding process encompasses differences regarding the number of steps to be executed and how some of those steps occur. The purpose of this paper is not to describe a specific process, but to show the main differences between the main optical bonding processes for flat panel displays assembly stack with cover plates, their similarities and some possible variations, and trends, by trying to identify the main critical-to-quality factors of each process step, expecting to contribute to a better overall understanding of optical bonding process. And although the work focuses on exploring production processes of flat panel displays assembly stack, mainly (but not limited) for to the automotive industry, it is also recognized that a combination of different processes and steps can be done when developing more complex and innovative products, such as free-form and curved displays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

Notes

  1. Figure accessed in December 2019 at https://www.gminsights.com/pressrelease/automotive-display-market

References

  1. Lee TH, Kim JS, Lee JH, Kim HJ (2019) Pressure-sensitive adhesives for flexible display applications. In: Vargas-Bernal R, He P, Zhang S (eds) R. Vargas-Bernal, P. He, & S. Zhang (Eds.), Hybrid Nanomaterials - Flexible Electronics Materials. IntechOpen. pp 67–81. https://doi.org/10.5772/intechopen.90619

  2. Bahadur B, Sampica JD, Tchon JL, Butterfield A (2011) Direct dry film optical bonding - a low-cost, robust, and scalable display lamination technology. J Soc Inf Disp 19:732. https://doi.org/10.1889/JSID19.11.732

    Article  Google Scholar 

  3. Huang PS, Chang MC, Chen YC (2016) Minimizing the impact of plastic-cover-lens bonding-induced delay bubble. Dig Tech Pap 47:1838–1840. https://doi.org/10.1002/sdtp.10977

    Article  Google Scholar 

  4. Yook JY, Park JC, Hwang J, Hwang JC (2017) Ultraviolet curable optically clear silicone resin for automotive displays. Dig Tech Pap 48:570–573. https://doi.org/10.1002/sdtp.11693

    Article  Google Scholar 

  5. O’Donnell SD (2013) High-Strength optical bonding method using optical silicone as a bonding medium and pressure sensitive adhesive as an intermediate layer. Patent Number US008462301B2. https://patentimages.storage.googleapis.com/50/31/9d/650b3c5cf1221e/US8462301.pdf. Accessed 10 Mar 2022

  6. Chen J, Liu CT (2013) Technology advances in flexible displays and substrates. IEEE Access 1:150–158. https://doi.org/10.1109/ACCESS.2013.2260792

    Article  Google Scholar 

  7. Campbell CJ, Clapper J, Behling RE et al (2017) Optically clear adhesives enabling foldable and flexible OLED displays. SID Symp Dig Tech Pap 48:2009–2011. https://doi.org/10.1002/sdtp.12071

    Article  Google Scholar 

  8. Jones S (1975) (2017) Plastic displays will play a major role in automotive HMIs. Inf Disp 33:18–22. https://doi.org/10.1002/j.2637-496x.2017.tb00994.x

    Article  Google Scholar 

  9. Hermann DS (2018) Automotive displays - trends, opportunities and challenges. In: AM-FPD 2018 - 25th International Workshop on Active-Matrix Flat panel Displays and Devices: TFT Technologies and FPD Materials, Proceedings. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.23919/AM-FPD.2018.8437433

  10. Hermann DS (2021) Automotive displays - trends and technologies. In: 2021 28th International Workshop on Active-Matrix Flat panel Displays and Devices (AM-FPD). Institute of Electrical and Electronics Engineers (IEEE), 164–168. https://doi.org/10.23919/am-fpd52126.2021.9499181

  11. Doyle D, Oehler P (2012) 50.1: Invited paper : optical bonding: critical technical challenges for performance, manufacturing, and supply chain. SID Symp Dig Tech Pap 43:667–670. https://doi.org/10.1002/j.2168-0159.2012.tb05870.x

    Article  Google Scholar 

  12. Stroganov VF, Serova VN (2020) Optical adhesives: analysis, advances, and development trends. Polym Sci - Ser D 13:182–188. https://doi.org/10.1134/S1995421220020227

    Article  Google Scholar 

  13. Abrahamson JT, Beagi HZ, Salmon F, Campbell CJ (2019) Optically clear adhesives for OLED. In: Luminescence - OLED Technology and Applications. IntechOpen. https://doi.org/10.5772/intechopen.88659

  14. Dan S, Gu H, Tan J et al (2018) Transparent epoxy/TiO2 optical hybrid films with tunable refractive index prepared via a simple and efficient way. Prog Org Coat 120:252–259. https://doi.org/10.1016/j.porgcoat.2018.02.017

    Article  Google Scholar 

  15. Bahadur B, Sampica JD, Tchon JL (1975) Marzen VP (2013) Direct-dry-film optical bonding: finding new applications. Inf Disp 29:34–39. https://doi.org/10.1002/j.2637-496x.2013.tb00631.x

    Article  Google Scholar 

  16. Smith-Gillespie R, Bandel W (2006) 7.3 : LCD ruggedization in displays with optically bonded AR glass lamination. In Americas Display Engineering and Applications Conference Digest (ADEAC)

  17. Lee J-G (2015) Curing behavior and characterization of dual curable adhesives based on Azo-initiator with high reactivity for touch screen panel in display. Seoul National University, Thesis for the degree of Master of Science

    Google Scholar 

  18. Lee SA, Kim Y (2020) The influence of mechanical characteristics on the performance of optical laminating materials in automotive applications. In: Digest of Technical Papers - SID International Symposium. Blackwell Publishing Ltd, 1453–1461. https://doi.org/10.1002/sdtp.14162

  19. Mapari S, Mestry S, Mhaske ST (2021) Developments in pressure-sensitive adhesives: a review. Springer Berlin Heidelb. https://doi.org/10.1007/s00289-020-03305-1

  20. Gollins K, Elvin N, Delale F (2020) Characterization of adhesive joints under high-speed normal impact: part II – Numerical studies. Int J Adhes Adhes 98:102530. https://doi.org/10.1016/J.IJADHADH.2019.102530

    Article  Google Scholar 

  21. Campbell CJ (2016) Optically clear adhesives. In: Handbook of Visual Display Technology. Springer International Publishing, Cham, 1501–1514. https://doi.org/10.1007/978-3-319-14346-0_197

  22. Livada B (2012) Avionic displays. Sci Tech Rev 62:70–79

    Google Scholar 

  23. Giordano A (2018) Screen glare be gone. Autonomous Vehicle Engineering 24–27. https://www.pva.net/news/screen-glare-be-gone/. Accessed 4 Oct 2019

  24. Blankenbach K (2016) What is a display? An introduction to visual displays and display systems. In: Handbook of Visual Display Technology. Springer International Publishing, Cham, pp 1–22. https://doi.org/10.1007/978-3-319-14346-0_201

  25. Chen M, Lyu J (2009) A lean six-sigma approach to touch panel quality improvement. Prod Plann Control 20:445–454. https://doi.org/10.1080/09537280902946343

    Article  Google Scholar 

  26. Slobodin DE, Doyle DR (2008) Interactive display system. Patent Number US20080266273A1. https://patentimages.storage.googleapis.com/23/dd/f1/89fbb425431ef7/US20080266273A1.pdf. Accessed 12 Jan 2022

  27. Dighde RM, Schultz B, Keam N (2016) Display device. Patent Number US009383769B2. https://patentimages.storage.googleapis.com/c8/33/6d/2c51f218e6787e/US9383769.pdf. Accessed 14 Apr 2022

  28. Mozdzyn L (1975) Rudolph M (2011) Optical bonding makes its mark with touch panels and other displays. Inf Disp 27:26–29. https://doi.org/10.1002/j.2637-496X.2011.tb00392.x

    Article  Google Scholar 

  29. Salinger JS, Aldrich JN, Shoval A (2016) Hybrid bonding techniques for electronic devices. Patent Number US009674965B1. https://patentimages.storage.googleapis.com/3f/f9/1c/503ad3db564d66/US9674965.pdf. Accessed 14 Apr 2022

  30. Stetson JW (1975) (2006) Analog resistive touch panels and sunlight readability. Inf Disp 22:26–30

    Google Scholar 

  31. Chen ST, Liu CC, Fu CY (2013) Study of a high-efficiency, -precision, one-shot OCA dispensing technique. J Mater Process Technol 213:1059–1067. https://doi.org/10.1016/j.jmatprotec.2013.02.005

    Article  Google Scholar 

  32. Chang EP, Holguin D (2005) Curable optically clear pressure-sensitive adhesives. J Adhes 81:495–508. https://doi.org/10.1080/00218460590944945

    Article  Google Scholar 

  33. Cruz S, Sousa A, Viana JC, Martins T (2017) Analysis of the bonding process and materials optimization for mitigating the Yellow Border defect on optically bonded automotive display panels. Displays 48:21–28. https://doi.org/10.1016/j.displa.2017.02.003

    Article  Google Scholar 

  34. Wang S-Y, Liao W-H, Yang K-H (2012) Investigation of Curtain Mura in TFT-TN panels after COG ACF process. Displays 33:173–177. https://doi.org/10.1016/j.displa.2012.08.002

    Article  Google Scholar 

  35. Hu G, Jin L, Jin Z et al (2018) P-63: improving peeling force for cover glass lamination to display panels. SID Symp Dig Tech Pap 49:1436–1439. https://doi.org/10.1002/sdtp.12218

    Article  Google Scholar 

  36. Feng Q, Su K, Du G et al (2021) P-55: analysis of bonding optically clear adhesive in dual-cell LCD. SID Symp Dig Tech Pap 52:1275–1278. https://doi.org/10.1002/sdtp.14933

    Article  Google Scholar 

  37. Ota Y, Yoshimizu T (2008) Display panel and method for fabricating the same. Patent Number US007359021B2. https://patentimages.storage.googleapis.com/ee/d4/88/852aae50b01b29/US7359021.pdf. Accessed 19 Mar 2022

  38. Prabhu KS, Schmitz TL, Ifju PG, Daly JG (2007) A survey of technical literature on adhesive applications for optics. New Dev Optomechanics 6665:1–11. https://doi.org/10.1117/12.735948

    Article  Google Scholar 

  39. Zhou K, Heikenfeld J, Dean KA et al (2009) A full description of a simple and scalable fabrication process for electrowetting displays. J Micromech Microeng 19:1–12. https://doi.org/10.1088/0960-1317/19/6/065029

    Article  Google Scholar 

  40. Messler RW (2004) Joining of materials and structures: from pragmatic process to enabling technology. Butterworth-Heinemann. https://doi.org/10.1016/B978-0-7506-7757-8.X5000-3

  41. Sivasankar S, Chu S (2007) Optical bonding using silica nanoparticle sol-gel chemistry. Nano Lett 7:3031–3034. https://doi.org/10.1021/nl071492h

    Article  Google Scholar 

  42. Araki M, Taniguch H, Tanaka K (2018) The vehicular display. In: 2018 - 25th International Workshop on Active-Matrix Flat panel Displays and Devices (AM-FPD), Proceedings. Institute of Electrical and Electronics Engineers Inc., Kyoto, 1–3. https://doi.org/10.23919/AM-FPD.2018.8437401

  43. Martin PM (2009) Handbook of deposition technologies for films and coatings: science, applications and technology. Third Edition, William Andrew

    Google Scholar 

  44. Kimura K, Yamano T, Nakazono T, et al (2011) Optical film laminate with a continuous web of cutting lines and manufacturing method and manufacturing apparatus thereof. European Patent EP2264515B1. https://worldwide.espacenet.com/publicationDetails/originalDocument?CC=EP&NR=2264515B1&KC=B1&FT=D&ND=&date=20111012&DB=&locale=en_EP. Accessed 14 Apr 2022

  45. Fan Y, Liu S, Zhang Y (2018) Direct bonding of polymer/glass-based microfluidic chips with dry film photoresist. Microsyst Technol 24:1659–1665. https://doi.org/10.1007/s00542-017-3541-3

    Article  Google Scholar 

  46. Yeh G, Rudolph ML, Chen JYC (2013) Minimizing the impact of bonding induced LCD defects. SID Symp Dig Tech Pap 44:951–954. https://doi.org/10.1002/j.2168-0159.2013.tb06380.x

    Article  Google Scholar 

  47. Lu D, Wang J, Li C et al (2013) Next generation liquid optically clear adhesives. Dig Tech Pap 44:949–950. https://doi.org/10.1002/j.2168-0159.2013.tb06379.x

    Article  Google Scholar 

  48. Pennington B, O’Hare J, Stensvad K et al (2014) Vacuumless lamination of printable LOCA. Dig Tech Pap 45:28–31. https://doi.org/10.1002/j.2168-0159.2014.tb00008.x

    Article  Google Scholar 

  49. Yoshitake M, Swatowski B (2019) Room temperature curable liquid optically clear adhesive for automotive display. In: Digest of Technical Papers - SID International Symposium. Blackwell Publishing Ltd, 892–893. https://doi.org/10.1002/sdtp.13066

  50. Shinya Y, Kamiya K, Toyoda T et al (2008) 19.4: development of “super view resin” the optical elasticity resin for LCD module. SID Symp Dig Tech Pap 39:252

    Article  Google Scholar 

  51. Shinya Y, Hayashi K, Ogawa K et al (2013) Development of novel optical bonding process and materials for flat panel display modules. Dig Tech Pap 44:946–948. https://doi.org/10.1002/j.2168-0159.2013.tb06378.x

    Article  Google Scholar 

  52. Rouse J, Jin H, Lee S, Lee J (2017) P-42: Advances in UV-curing silicone optical bonding resins designed for high reliability automotive and curved display applications. SID Symp Dig Tech Pap 48:1394–1396. https://doi.org/10.1002/sdtp.11912

    Article  Google Scholar 

  53. Hirata S, Kondou S, Umemoto S, Nakazono T (2012) System and method for bonding optical film to a liquid crystal display panel. Patent Number US008172631B2. https://patentimages.storage.googleapis.com/af/e8/ed/26f93aa8c6a9c7/US8172631.pdf. Accessed 24 Jan 2022

  54. Chun Chang H (2018) TFT-LCD module and package process. In: Souk J, Morozumi S, Luo F-C, Bita I (eds) Flat Panel Display Manufacturing, 1st edn. John Wiley and Sons, Ltd, pp 73–86. https://doi.org/10.1002/9781119161387.ch5

  55. Park MS, Yang SW, Kim WH, et al (2012) Touch panel. Patent Number PCT/KR2O1O/OO6599; US 2012/0244348 A1. https://patentimages.storage.googleapis.com/92/b3/50/330c1c7eb294eb/US20120244348A1.pdf. Accessed 24 Apr2022

  56. Lee YW, Yuan Q, Xu X, Lin F (2016) Optical bonding apparatus, touch sensitive display using the same and method of making the same. Patent Number US009279068B2; WO/2012/151734. https://patentimages.storage.googleapis.com/37/06/f5/4fadbec3521c05/US9279068.pdf. Accessed 13 Jan 2022

  57. Ebnesajjad S, Lanck AH (2015) Adhesives technology handbook, Third Edition. Copyright © 2015 Elsevier Inc. All rights reserved. https://doi.org/10.1016/C2013-0-18392-4

  58. Sampica JD, Campbell L, Ternes DM, Nemeth PR (2001) Method and apparatus for bonding optical films in precision alignment. Patent Number US006284088B1. https://patentimages.storage.googleapis.com/0c/22/3d/87094d3c15477d/US6284088.pdf. Accessed 2 May 2022

  59. Sampica JD, Nemeth PR, Barnidge TJ, Marzen VP (2010) Alignment system and method thereof. Patent Number US007814676B2. https://patentimages.storage.googleapis.com/fa/06/56/34f3a5584d3ae1/US7814676.pdf. Accessed 2 May 2022

  60. Sampica JD, Nemeth PR, Marzen VP (2009) Process for glass-to-glass sealing OLEDS with dry film adhesive. Patent Number US007566254B2. https://patentimages.storage.googleapis.com/86/d6/4f/ddefff2b504bac/US7566254.pdf. Accessed 2 May 2022

  61. Marzen VP, Nemeth PR, Sampica JD (2008) Panel-to-panel lamination method for improved uniformity. Patent Number US007435311B1. https://patentimages.storage.googleapis.com/87/db/b7/c3b4c4facd7bd5/US7435311.pdf. Accessed 2 May 2022

  62. Ciliberti MN, Dodson CW (2013) Semi-automated reworkability process for de-bonding a display. Patent Number US008419896B2. https://patentimages.storage.googleapis.com/6f/85/7d/6c30fd45278af7/US8419896.pdf. Accessed 19 Apr 2022

  63. Ho GH, Shao C-H, Sung J-J, et al (2012) Outgassing and photochemical studies of photosensitive films upon irradiation at 13.5 nm. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 30:051602. https://doi.org/10.1116/1.4739000

  64. Almeida Martins TJ, da Cruz Barbosa e Silva E, Aguiar Ribeiro NM, et al (2016) Method for bonding two layers with liquid adhesive and bonded assembly thereof. Patent Number WO 2016/207702 A1. https://patentimages.storage.googleapis.com/3a/8c/ba/990f3296045771/WO2016207702A1.pdf. Accessed 10 Oct 2019

  65. Caldeira C, Lima N, Cardoso H, et al (2020) Method of eliminating entrained air between substrates during optical bonding. Patent Number US 2021/0008836 A1. https://patentscope.wipo.int/search/en/detail.jsf?docId=US314529765. Accessed 12 Apr 2022

  66. Shibata H, Shinoda T, Iizuka T, et al (2014) Manufacturing method of Flat-Panel Display device and adhesive-resin application apparatus therefor. Patent Number US008764930B2. https://patentimages.storage.googleapis.com/f2/e6/26/fa76354ed0e89b/US8764930.pdf. Accessed 02 Feb 2022

  67. Habenicht G (2008) Applied adhesive bonding: a practical guide for flawless results. John Wiley & Sons. John Wiley & Sons. https://doi.org/10.1002/9783527626458

  68. Lu D, Wang J, Li C, et al (2012) Liquid optically clear adhesives for display applications. ICEPT-HDP 2012 Proceedings - 2012 13th International Conference on Electronic Packaging Technology and High Density Packaging 438–441. https://doi.org/10.1109/ICEPT-HDP.2012.6474653

  69. Feinstein CJ, Sung K-H, Horstkemper R (2014) Liquid adhesive boundary control. Patent Number US008875652B2. https://patentimages.storage.googleapis.com/32/10/88/5e76ac0598f641/US8875652.pdf. Accessed 03 May 2022

  70. Nally AJ, Giordano AM, Carey EF, Urquhart JN (2018) Determining an automatic bonding sequence for optical bonding. Patent Number US10155371B2. https://patentimages.storage.googleapis.com/13/dc/c8/5f79bbfa2fc3d3/US10155371.pdf. Accessed 25 Nov 2021

  71. Lee JH (2020) Design of highly adhesive and water-resistant UV/heat dual-curable epoxy-acrylate composite for narrow bezel display based on reactive organic-inorganic hybrid nanoparticles. Polymers (Basel) 12:1–12. https://doi.org/10.3390/POLYM12102178

    Article  Google Scholar 

  72. Slobodin DE (2011) Bezelless display system having a display assembly with an overlay including a transparent section optically bonded to a display region with an optical layer that includes a pre-cured adhesive preform. Patent Number US007924362B2. https://patentimages.storage.googleapis.com/a9/91/0e/4001ad0c5e99c2/US7924362.pdf. Accessed 04 Feb 2022

  73. Lee SA, Kim YJ (2021) Novel silicone laminating materials for improved index matching in automotive display applications. J Soc Inf Disp 29:608–619. https://doi.org/10.1002/jsid.1003

    Article  Google Scholar 

  74. Jung WW, Lee SL, Kim C il, et al (2014) Automatic bonding system for liquid crystal display device and automatic bonding method using the same Patent Number US 20140182780 A1. https://patentimages.storage.googleapis.com/70/97/53/b2a0b9b8c0c060/US20140182780A1.pdf. Accessed 10 Mar 2022

  75. Goss B (2002) Bonding glass and other substrates with UV curing adhesives. Int J Adhes Adhes 22:405–408. https://doi.org/10.1016/S0143-7496(02)00022-2

    Article  Google Scholar 

  76. Lee JG, Shim GS, Park JW et al (2016) Kinetic and mechanical properties of dual curable adhesives for display bonding process. Int J Adhes Adhes 70:249–259. https://doi.org/10.1016/j.ijadhadh.2016.07.005

    Article  Google Scholar 

  77. Horikoshi I (2018) Dry etching processes and equipment. In: Souk J, Morozumi S, Luo F-C, Bita I (eds) Flat Panel Display Manufacturing, 1st edn. John Wiley and Sons, Ltd, pp 319–328. https://doi.org/10.1002/9781119161387.ch14_02

  78. Almeida Martins TJ, da Cruz Barbosa e Silva E, Aguiar Ribeiro NM, et al (2017) Method of full display assembly with liquid bonding material and bonded display thereof. Patent Number WO 2017/001895 A1. https://patentimages.storage.googleapis.com/88/aa/89/92aa918758914b/WO2017001895A1.pdf. Accessed 10 Oct 2019

  79. Lima N, Aires A, Stegemann M, et al (2021) Method of forming a curved, rigid display article. Patent Number US 2021/0008785 A1. https://patentimages.storage.googleapis.com/71/02/1c/5ce2bdd1a4ff75/US20210008785A1.pdf. Accessed 30 Mar 2022

  80. Hung CC (2018) LCM inspection and repair. In: Souk J, Morozumi S, Luo F-C, Bita I (eds) Flat Panel Display Manufacturing, First Edition. John Wiley and Sons, Ltd, pp 379–391. https://doi.org/10.1002/9781119161387.ch16

  81. Yano K, Nishimura Y, Itoh M (2018) Productivity and quality control overview. In: Souk J, Morozumi S, Luo F-C, Bita I (eds) Flat Panel Display Manufacturing, First Edition. John Wiley and Sons, Ltd, pp 393–417. https://doi.org/10.1002/9781119161387.ch17

  82. Matsuhira T (2009) Method of manufacturing a display device and bonding method. Patent Number US 2009/0283211 A1. https://patentimages.storage.googleapis.com/7a/3f/a6/aa650d36367f31/US20090283211A1.pdf. Accessed 12 May 2022

  83. Lee YH, Tang KH (2012) How human perceptions of Mura affect LCD market values. Displays 33:46–53. https://doi.org/10.1016/j.displa.2011.12.003

    Article  Google Scholar 

  84. Lee JY, Yoo SI (2004) Automatic detection of region-Mura defect in TFT-LCD. EICE TRANSACTIONS on Information and Systems 87(10):2371–2378

  85. Ming W, Zhang S, Liu X et al (2021) Survey of Mura defect detection in liquid crystal displays based on machine vision. Cryst (Basel) 11:1–21. https://doi.org/10.3390/cryst11121444

    Article  Google Scholar 

  86. Taniguchi K, Ueta K, Tatsumi S (2006) A Mura detection method. Pattern Recognit 39:1044–1052. https://doi.org/10.1016/j.patcog.2005.07.007

    Article  MATH  Google Scholar 

  87. Fan SKS, Chuang YC (2010) Automatic detection of Mura defect in TFT-LCD based on regression diagnostics. Pattern Recognit Lett 31:2397–2404. https://doi.org/10.1016/J.PATREC.2010.07.013

    Article  Google Scholar 

  88. Ishikawa T, Liu F, Li C-C et al (2013) 51.2: touch Mura mechanisms and its suppression by use of cover glass. SID Symp Dig Tech Pap 44:709–712. https://doi.org/10.1002/j.2168-0159.2013.tb06311.x

    Article  Google Scholar 

  89. Leshem S, Cohen N, Pham S, et al (2018) TFT array: inspection, testing, and repair. In: Souk J, Morozumi S, Luo F-C, Bita I (eds) Flat Panel Display Manufacturing, First Edition. John Wiley and Sons, Ltd, 329–378. https://doi.org/10.1002/9781119161387.ch15

  90. Chan YK, Leimeister M (2016) Method and apparatus for optical bonding, and a display. Patent Number WI 2016/074917 A1. https://patentimages.storage.googleapis.com/4e/1d/50/4ab0257a0bd807/WO2016074917A1.pdf. Accessed 11 May 2022

  91. Bahadur B (1991) Display parameters and requirements. In: Liquid Crystals — Applications and Uses. WORLD SCIENTIFIC,1–120. https://doi.org/10.1142/9789814360449_0001

  92. Gualberto HR, do CarmoAmorim F, Costa HRM (2021) A review of the relationship between design factors and environmental agents regarding adhesive bonded joints. J Braz Soc Mech Sci Eng 43:388–389. https://doi.org/10.1007/s40430-021-03105-2

    Article  Google Scholar 

Download references

Funding

This work has been supported by FCT (Fundação para a Ciência e Tecnologia) within the R&D Units Project Scope: UIDB/00319/2020, and the doctoral scholarship grant: PD/BDE/142911/2018.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Original draft conceptualization, writing, and initial editing were performed by Rui Oliveira. Work supervision, comments, final editing, and final reviews of the manuscript were performed by Júlio Viana and Paulo Sampaio. All authors have approved the final manuscript version.

Corresponding author

Correspondence to Rui Oliveira.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

This is not applicable. The authors declared that all the authors listed in the article have no objections.

Consent for publication

The authors confirm that this work is not published before and do not consider other places. All coauthors have approved its publication.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, R., Viana, J. & Sampaio, P. Optical bonding process of flat panel displays and their critical-to-quality factors. Int J Adv Manuf Technol 125, 5631–5650 (2023). https://doi.org/10.1007/s00170-023-10810-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-10810-w

Keywords

Navigation