Skip to main content
Log in

Hybrid 3D printing of multifunctional polylactic acid/carbon black nanocomposites made with material extrusion and post-processed with CO2 laser cutting

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Material extrusion (MEX), frequently known as fused filament fabrication (FFF), is a material extrusion 3D printing process for fabricating cost-effectively functional polymeric parts. Even if the MEX process fabricates fully dense or lightweight specimens with a relatively complex geometry in a reduced time and cost, it presents some drawbacks in shape accuracy, surface roughness, and anisotropic mechanical response. Herewith, the interaction between material design, 3D printing, and laser post-processing is investigated for efficient printable nanocomposite materials. Polylactic acid (PLA)/carbon black (CB) nanocomposites were prepared with a thermomechanical process and characterized for their mechanical and electrical properties. Then, they were processed with a low-cost CO2 laser, to assess their behavior in the process. Critical geometrical characteristics were measured, and results were analyzed with statistical modeling, to optimize the process and evaluate the effect of the laser cutting parameters on the quality of the samples. This paper points out new data on low-cost CO2 laser cutting of MEX thin plates fabricated using PLA/CB nanocomposite filament and an affordable material extrusion MEX 3D printing process. The data produced are helpful for the improvement of the shape accuracy and surface roughness of parts and components used in nanocomposite-based innovative assemblies and systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

Abbreviations

3DP:

3D printing

ABS:

Acrylonitrile butadiene styrene

AM:

Additive manufacturing

ANN:

Artificial neural networks

ANOVA:

Analysis of variances

CA:

Cutting angle (degrees)

CB:

Carbon black

CCW:

Counterclockwise

CS:

Cutting speed (mm/s)

CW:

Clockwise

DMA:

Dynamic mechanical analysis

DOE:

Design of experiment

E:

Tensile modulus of elasticity (MPa)

FDM :

Fused deposition modeling

FFF:

Fused filament fabrication

FSW:

Friction stir welding

HAM:

Hybrid additive manufacturing

HAZ:

Heat affected zone

Kd:

Kerf down width (mm)

Km:

Kerf median width (mm)

Ku:

Kerf upper width (mm)

LP:

Laser power (W)

MEP:

Main effect plot

MEX:

Material extrusion

MRR:

Material removal rate

NN:

Neural network

NT:

Nozzle temperature (°C)

PET-G:

Polyethylene terephthalate glycol

PLA:

Polylactic acid

PMMA:

Polymethyl methacrylate

PP:

Polypropylene

Ra:

Average surface roughness: average profile height deviations from the mean line (μm)

Rt:

Total height of the roughness profile (μm)

SEM:

Scanning electron microscopy

SoD:

Stand-off distance (mm)

TEM mode:

Transverse electromagnetic mode

Tg:

Glass transition temperature (°C)

TGA:

Thermogravimetric analysis

References

  1. Çelik A, Yaman H, Turan S et al (2018) An innovative partial resurfacing implant for humeral bone loss in shoulder instability. J Mater Process Technol 1:1–8

    Google Scholar 

  2. Hall SE, Regis JE, Renteria A et al (2021) Paste extrusion 3D printing and characterization of lead zirconate titanate piezoelectric ceramics. Ceram Int 47:22042–22048. https://doi.org/10.1016/j.ceramint.2021.04.224

    Article  Google Scholar 

  3. Kechagias J, Chaidas D, Vidakis N et al (2022) Key parameters controlling surface quality and dimensional accuracy: a critical review of FFF process. Mater Manuf Process 00:1–22. https://doi.org/10.1080/10426914.2022.2032144

    Article  Google Scholar 

  4. Jin M, Neuber C, Schmidt H-W (2020) Tailoring polypropylene for extrusion-based additive manufacturing. Addit Manuf 33:101101. https://doi.org/10.1016/j.addma.2020.101101

    Article  Google Scholar 

  5. Vidakis N, Petousis M, Mountakis N, Kechagias JD (2022) Material extrusion 3D printing and friction stir welding: an insight into the weldability of polylactic acid plates based on a full factorial design. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-022-09595-1

    Article  Google Scholar 

  6. Vidakis N, Petousis M, Korlos A et al (2022) Friction stir welding optimization of 3D-printed acrylonitrile butadiene styrene in hybrid additive manufacturing. Polymers (Basel) 14:2474. https://doi.org/10.3390/polym14122474

    Article  Google Scholar 

  7. Singh S, Prakash C, Gupta MK (2020) On friction-stir welding of 3D printed thermoplastics. 75–91. https://doi.org/10.1007/978-3-030-18854-2_3

  8. Kechagias JD, Ninikas K, Petousis M, Vidakis N (2022) Laser cutting of 3D printed acrylonitrile butadiene styrene plates for dimensional and surface roughness optimization. Int J Adv Manuf Technol 119:2301–2315. https://doi.org/10.1007/s00170-021-08350-2

    Article  Google Scholar 

  9. Santiago CC, Yelamanchi B, la Peña JA, et al (2021) Thermoplastic extrusion additive manufacturing of high-performance carbon fiber PEEK lattices. Crystals 11.https://doi.org/10.3390/cryst11121453

  10. Dilberoglu UM, Gharehpapagh B, Yaman U, Dolen M (2017) The role of additive manufacturing in the era of Industry 4.0. Procedia Manuf 11:545–554. https://doi.org/10.1016/j.promfg.2017.07.148

    Article  Google Scholar 

  11. Salazar R, Pizarro F, Vasquez D, Rajo-Iglesias E (2022) Assessment of 3D-printed waveguides using conductive filaments and a chloroform-based smoothing process. Addit Manuf 51:102593. https://doi.org/10.1016/j.addma.2022.102593

    Article  Google Scholar 

  12. Quan Z, Larimore Z, Wu A et al (2016) Microstructural design and additive manufacturing and characterization of 3D orthogonal short carbon fiber/acrylonitrile-butadiene-styrene preform and composite. Compos Sci Technol 126:139–148. https://doi.org/10.1016/j.compscitech.2016.02.021

    Article  Google Scholar 

  13. Dixit N, Jain PK (2021) 3D printed carbon fiber reinforced thermoplastic composites: a review. Mater Today Proc 43:678–681. https://doi.org/10.1016/j.matpr.2020.12.609

    Article  Google Scholar 

  14. Arif MF, Alhashmi H, Varadarajan KM et al (2020) Multifunctional performance of carbon nanotubes and graphene nanoplatelets reinforced PEEK composites enabled via FFF additive manufacturing. Compos Part B Eng 184:107625. https://doi.org/10.1016/j.compositesb.2019.107625

    Article  Google Scholar 

  15. Romero PE, Arribas-Barrios J, Rodriguez-Alabanda O et al (2021) Manufacture of polyurethane foam parts for automotive industry using FDM 3D printed molds. CIRP J Manuf Sci Technol 32:396–404. https://doi.org/10.1016/j.cirpj.2021.01.019

    Article  Google Scholar 

  16. Fenollosa F, Gomà JR, Buj-Corral I et al (2019) Foreseeing new multi-material FFF-additive manufacturing concepts meeting mimicking requirements with living tissues. Procedia Manuf 41:1063–1070. https://doi.org/10.1016/j.promfg.2019.10.034

    Article  Google Scholar 

  17. Cailleaux S, Sanchez-Ballester NM, Gueche YA et al (2021) Fused deposition modeling (FDM), the new asset for the production of tailored medicines. J Control Release 330:821–841. https://doi.org/10.1016/j.jconrel.2020.10.056

    Article  Google Scholar 

  18. Roach DJ, Roberts C, Wong J et al (2020) Surface modification of fused filament fabrication (FFF) 3D printed substrates by inkjet printing polyimide for printed electronics. Addit Manuf 36:101544. https://doi.org/10.1016/j.addma.2020.101544

    Article  Google Scholar 

  19. Choopani Y, Khajehzadeh M, Razfar MR (2021) Development of fiber flow finishing (FFF) process for polishing hip prostheses. J Manuf Process 68:1245–1260. https://doi.org/10.1016/j.jmapro.2021.06.053

    Article  Google Scholar 

  20. Somireddy M, Czekanski A (2020) Anisotropic material behavior of 3D printed composite structures – material extrusion additive manufacturing. Mater Des 195:108953. https://doi.org/10.1016/j.matdes.2020.108953

    Article  Google Scholar 

  21. Rodzeń K, Harkin-Jones E, Wegrzyn M et al (2021) Improvement of the layer-layer adhesion in FFF 3D printed PEEK/carbon fibre composites. Compos Part A Appl Sci Manuf 149:106532. https://doi.org/10.1016/j.compositesa.2021.106532

    Article  Google Scholar 

  22. García E, Núñez PJ, Chacón JM, et al (2020) Comparative study of geometric properties of unreinforced PLA and PLA-graphene composite materials applied to additive manufacturing using FFF technology. Polym Test 91.https://doi.org/10.1016/j.polymertesting.2020.106860

  23. Goh GD, Yap YL, Agarwala S, Yeong WY (2019) Recent progress in additive manufacturing of fiber reinforced polymer composite. Adv Mater Technol 4:1800271. https://doi.org/10.1002/admt.201800271

    Article  Google Scholar 

  24. Han P, Tofangchi A, Deshpande A et al (2019) An approach to improve interface healing in FFF-3D printed Ultem 1010 using laser pre-deposition heating. Procedia Manuf 34:672–677. https://doi.org/10.1016/j.promfg.2019.06.195

    Article  Google Scholar 

  25. Basgul C, Thieringer FM, Kurtz SM (2021) Heat transfer-based non-isothermal healing model for the interfacial bonding strength of fused filament fabricated polyetheretherketone. Addit Manuf 46:102097. https://doi.org/10.1016/j.addma.2021.102097

    Article  Google Scholar 

  26. Rupal BS, Mostafa KG, Wang Y, Qureshi AJ (2019) A reverse CAD approach for estimating geometric and mechanical behavior of FDM printed parts. Procedia Manuf 34:535–544. https://doi.org/10.1016/j.promfg.2019.06.217

    Article  Google Scholar 

  27. Agarwal KM, Shubham P, Bhatia D et al (2022) Analyzing the impact of print parameters on dimensional variation of ABS specimens printed using fused deposition modelling (FDM). Sensors Int 3:100149. https://doi.org/10.1016/j.sintl.2021.100149

    Article  Google Scholar 

  28. Zhao Y, Zhao K, Li Y, Chen F (2020) Mechanical characterization of biocompatible PEEK by FDM. J Manuf Process 56:28–42. https://doi.org/10.1016/j.jmapro.2020.04.063

    Article  Google Scholar 

  29. Szust A, Adamski G (2022) Using thermal annealing and salt remelting to increase tensile properties of 3D FDM prints. Eng Fail Anal 132:105932. https://doi.org/10.1016/j.engfailanal.2021.105932

    Article  Google Scholar 

  30. Al Rashid A, Khan SA, G. Al-Ghamdi S, Koç M, (2021) Additive manufacturing of polymer nanocomposites: Needs and challenges in materials, processes, and applications. J Mater Res Technol 14:910–941. https://doi.org/10.1016/j.jmrt.2021.07.016

    Article  Google Scholar 

  31. Kechagias JD, Vidakis N, Petousis M, Mountakis N (2022) A multi-parametric process evaluation of the mechanical response of PLA in FFF 3D printing. Mater Manuf Process 00:1–13. https://doi.org/10.1080/10426914.2022.2089895

    Article  Google Scholar 

  32. Dhakal KN, Khanal S, Krause B et al (2022) Electrically conductive and piezoresistive polymer nanocomposites using multiwalled carbon nanotubes in a flexible copolyester: Spectroscopic, morphological, mechanical and electrical properties. Nano-Structures & Nano-Objects 29:100806. https://doi.org/10.1016/j.nanoso.2021.100806

    Article  Google Scholar 

  33. Vidakis N, Petousis M, Kourinou M et al (2021) Additive manufacturing of multifunctional polylactic acid (PLA)—multiwalled carbon nanotubes (MWCNTs) nanocomposites. Nanocomposites 7:184–199. https://doi.org/10.1080/20550324.2021.2000231

    Article  Google Scholar 

  34. Wang J, Ma C, Chen G, Dai P (2020) Interlaminar fracture toughness and conductivity of carbon fiber/epoxy resin composite laminate modified by carbon black-loaded polypropylene non-woven fabric interleaves. Compos Struct 234:111649. https://doi.org/10.1016/j.compstruct.2019.111649

    Article  Google Scholar 

  35. Lee TJ, Kim WJ (2020) Microstructure and tensile properties of magnesium nanocomposites fabricated using magnesium chips and carbon black. J Magnes Alloy 8:860–872. https://doi.org/10.1016/j.jma.2020.05.007

    Article  Google Scholar 

  36. Vidakis N, Maniadi A, Petousis M et al (2020) Mechanical and electrical properties investigation of 3D-printed acrylonitrile–butadiene–styrene graphene and carbon nanocomposites. J Mater Eng Perform 29:1909–1918. https://doi.org/10.1007/s11665-020-04689-x

    Article  Google Scholar 

  37. Narongthong J, Das A, Le HH et al (2018) An efficient highly flexible strain sensor: Enhanced electrical conductivity, piezoresistivity and flexibility of a strongly piezoresistive composite based on conductive carbon black and an ionic liquid. Compos Part A Appl Sci Manuf 113:330–338. https://doi.org/10.1016/j.compositesa.2018.08.004

    Article  Google Scholar 

  38. Azizi S, David E, Fréchette MF et al (2018) Electrical and thermal conductivity of ethylene vinyl acetate composite with graphene and carbon black filler. Polym Test 72:24–31. https://doi.org/10.1016/j.polymertesting.2018.09.031

    Article  Google Scholar 

  39. Zhou B, Luo W, Yang J et al (2016) Thermal conductivity of aligned CNT/polymer composites using mesoscopic simulation. Compos Part A Appl Sci Manuf 90:410–416. https://doi.org/10.1016/j.compositesa.2016.07.023

    Article  Google Scholar 

  40. Ram R, Soni V, Khastgir D (2020) Electrical and thermal conductivity of polyvinylidene fluoride (PVDF) – conducting carbon black (CCB) composites: validation of various theoretical models. Compos Part B Eng 185:107748. https://doi.org/10.1016/j.compositesb.2020.107748

    Article  Google Scholar 

  41. Abdalla A, Hamzah HH, Keattch O et al (2020) Augmentation of conductive pathways in carbon black/PLA 3D-printed electrodes achieved through varying printing parameters. Electrochim Acta 354:136618. https://doi.org/10.1016/j.electacta.2020.136618

    Article  Google Scholar 

  42. Vidakis N, Petousis M, Velidakis E, et al (2021) Fused filament fabrication three-dimensional printing multi-functional of polylactic acid/carbon black nanocomposites. C 7:52. https://doi.org/10.3390/c7030052

  43. Taufik M, Jain PK (2017) Laser assisted finishing process for improved surface finish of fused deposition modelled parts. J Manuf Process 30:161–177. https://doi.org/10.1016/j.jmapro.2017.09.020

    Article  Google Scholar 

  44. ValergaPuerta AP, Lopez-Castro JD, Ojeda López A, Fernández Vidal SR (2021) On improving the surface finish of 3D printing polylactic acid parts by corundum blasting. Rapid Prototyp J 27:1398–1407. https://doi.org/10.1108/RPJ-05-2021-0105

    Article  Google Scholar 

  45. Moradi M, Moghadam MK, Shamsborhan M et al (2020) Post-processing of FDM 3d-printed polylactic acid parts by laser beam cutting. Polymers (Basel) 12. https://doi.org/10.3390/polym12030550

  46. Atanasov PA, Baeva MG (1997) CW CO2 laser cutting of plastics. In: XI international symposium on gas flow and chemical lasers and high-power laser conference

  47. Caiazzo F, Curcio F, Daurelio G, Minutolo FMC (2005) Laser cutting of different polymeric plastics (PE, PP and PC) by a CO 2 laser beam. J Mater Process Technol 159:279–285. https://doi.org/10.1016/j.jmatprotec.2004.02.019

    Article  Google Scholar 

  48. Mushtaq RT, Wang Y, Rehman M, et al (2020) State-of-the-art and trends in CO2 laser cutting of polymeric materials-A review. Materials (Basel) 13. https://doi.org/10.3390/ma13173839

  49. Chryssolouris G (2013) Laser machining: theory and practice. Springer Science & Business Media

  50. Hasan SM, Hubeatir KA, Abd DS (2021) Effect of CO2 laser parameters on redwood engraving process complemented by Taguchi method. Mater Today Proc 42:2566–2572. https://doi.org/10.1016/j.matpr.2020.12.580

    Article  Google Scholar 

  51. Li C, Snarr SE, Denlinger ER et al (2021) Experimental parameter identification for part-scale thermal modeling of selective laser sintering of PA12. Addit Manuf 48:102362. https://doi.org/10.1016/j.addma.2021.102362

    Article  Google Scholar 

  52. Song J-H, Kim H-J, Kim M-S et al (2020) Direct printing of performance tunable strain sensor via nanoparticle laser patterning process. Virtual Phys Prototyp 15:265–277. https://doi.org/10.1080/17452759.2020.1733431

    Article  Google Scholar 

  53. Mekonnen BG, Bright G, Walker A (2016) A study on state of the art technology of laminated object manufacturing (LOM) BT - CAD/CAM, robotics and factories of the future. In: Syan CS (ed) Mandal DK. Springer India, New Delhi, pp 207–216

    Google Scholar 

  54. Chai Y, Chen X-B, Zhang D et al (2020) Laser polished fused deposition poly-lactic acid objects for personalized orthopaedic application. SN Appl Sci 2:1838. https://doi.org/10.1007/s42452-020-03637-7

    Article  Google Scholar 

  55. Braun K, Willenborg E, Schleifenbaum JH (2020) Laser polishing as a new post process for 3D-printed polymer parts. Procedia CIRP 94:134–138. https://doi.org/10.1016/j.procir.2020.09.026

    Article  Google Scholar 

  56. Han P, Tofangchi A, Zhang S et al (2020) Effect of in-process laser interface heating on strength isotropy of extrusion-based additively manufactured PEEK. Procedia Manuf 48:737–742. https://doi.org/10.1016/j.promfg.2020.05.107

    Article  Google Scholar 

  57. Parandoush P, Tucker L, Zhou C, Lin D (2017) Laser assisted additive manufacturing of continuous fiber reinforced thermoplastic composites. Mater Des 131:186–195. https://doi.org/10.1016/j.matdes.2017.06.013

    Article  Google Scholar 

  58. Kechagias JD, Ninikas K, Petousis M et al (2021) An investigation of surface quality characteristics of 3D printed PLA plates cut by CO2 laser using experimental design. Mater Manuf Process 36:1544–1553. https://doi.org/10.1080/10426914.2021.1906892

    Article  Google Scholar 

  59. Wang J, Liu Y, Wang K et al (2022) Progressive collapse behaviors and mechanisms of 3D printed thin-walled composite structures under multi-conditional loading. Thin-Walled Struct 171:108810. https://doi.org/10.1016/j.tws.2021.108810

    Article  Google Scholar 

  60. Ingarao G, Priarone PC (2020) A comparative assessment of energy demand and life cycle costs for additive- and subtractive-based manufacturing approaches. J Manuf Process 56:1219–1229. https://doi.org/10.1016/j.jmapro.2020.06.009

    Article  Google Scholar 

  61. Kechagias JD, Ninikas K, Stavropoulos P, Salonitis K (2021) A generalised approach on kerf geometry prediction during CO2 laser cut of PMMA thin plates using neural networks. Lasers Manuf Mater Process 8:372–393. https://doi.org/10.1007/s40516-021-00152-4

    Article  Google Scholar 

  62. Pandey PM, Venkata Reddy N, Dhande SG (2003) Improvement of surface finish by staircase machining in fused deposition modeling. J Mater Process Technol 132:323–331. https://doi.org/10.1016/S0924-0136(02)00953-6

    Article  Google Scholar 

  63. Guo C, Liu X, Liu G (2021) Surface finishing of FDM-fabricated amorphous polyetheretherketone and its carbon-fiber-reinforced composite by dry milling. Polymers 13:2175. https://doi.org/10.3390/polym13132175

  64. Kechagias JD, Fountas NA, Ninikas K et al (2021) Surface characteristics investigation of 3D-printed PET-G plates during CO2 laser cutting. Mater Manuf Process 00:1–11. https://doi.org/10.1080/10426914.2021.1981933

    Article  Google Scholar 

  65. Choudhury IA, Shirley S (2010) Laser cutting of polymeric materials: an experimental investigation. Opt Laser Technol 42:503–508. https://doi.org/10.1016/j.optlastec.2009.09.006

    Article  Google Scholar 

  66. Eltawahni HA, Olabi AG, Benyounis KY (2010) Effect of process parameters and optimization of CO2 laser cutting of ultra high-performance polyethylene. Mater Des 31:4029–4038. https://doi.org/10.1016/j.matdes.2010.03.035

    Article  Google Scholar 

  67. Phadke MS (1995) Quality engineering using robust design, 1st edn. Prentice Hall PTR, USA

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Aleka Manousaki from the Institute of Electronic Structure and Laser of the Foundation for Research and Technology, Hellas (IESL-FORTH), for taking the SEM images presented in this work.

Author information

Authors and Affiliations

Authors

Contributions

John D. Kechagias: conceptualization, methodology, resources, supervision, project administration, process optimization; Nectarios Vidakis: methodology, visualization, resources; Konstantinos Ninikas: software, formal analysis, investigation, data curation; Markos Petousis: methodology, formal analysis; Nikolaos Vaxevanidis: investigation, data curation, statistical modeling; the manuscript was written through contributions of all authors. All authors have approved the final version of the manuscript.

Corresponding author

Correspondence to John D. Kechagias.

Ethics declarations

Conflict of interest

The authors declare no competing interests. The funding sponsors had no role in the design of the study; in the collection, analysis, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results. Journal policies have been reviewed and accepted by all authors.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 43 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kechagias, J.D., Vidakis, N., Ninikas, K. et al. Hybrid 3D printing of multifunctional polylactic acid/carbon black nanocomposites made with material extrusion and post-processed with CO2 laser cutting. Int J Adv Manuf Technol 124, 1843–1861 (2023). https://doi.org/10.1007/s00170-022-10604-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-10604-6

Keywords

Navigation