Skip to main content
Log in

Grain refinement in semi-solid metal processing: current status and recent development

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Metal casting has become increasingly significant in the manufacture of industrial components. Aluminium alloys have become a typical metal casting material due to their lightweight, excellent corrosion resistance, improved mechanical properties, and excellent electrical conductivity. Grain refinement is a preferred method for improving the strength and flexibility of metallic materials by modifying the size of the grain structure using various processes. As a result, aluminium grain refinement is regarded an essential method in the aluminium processing industry. Grain refinement involves severe plastic deformation, quick solidification, and the addition of an inoculant. This paper discusses semi-solid metal processing (SSMP) research that enhances material properties using the grain refinement technique. The effect of different grain refinement techniques to the microstructure formation is also highlighted. The importance of the fine equiaxed globular microstructure in SSMP areas is explained. This study is expected to help the researcher establish the most effective grain refining technique in SSMP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

Data can be made available upon request subject to the approval of all parties involved in the research.

References

  1. Czerwinski F (2017) “An overview of thixoforming process,”. https://doi.org/10.1088/1757-899X/257/1/012053.

  2. Razak NA, Ahmad AH, Rashidi MM (2020) Thermal profile and microstructure of wrought aluminium 7075 for semi-solid metal processing. Int J Automot Mech Eng 17(2):7842–7850. https://doi.org/10.15282/ijame.17.2.2020.03.0584

    Article  Google Scholar 

  3. de Figueredo A, N A D C (2001) Association, Science and technology of semi-solid metal processing LK - https://ump.on.worldcat.org/oclc/248922398. Rosemont, Ill. SE - Getr. Zählung [circa 140 Seiten]: North American Die Casting Association

  4. Miller WS, Zhuang L, Bottema J, Wittebrood AJ, De Smet P, Haszler A, Vieregge A (2000) Recent development in aluminium alloys for the automotive industry. Mater Sci Eng A 280:37–49. https://doi.org/10.1016/S0921-5093(99)00653-X

    Article  Google Scholar 

  5. Guan R, Lou H, Huang H, Liang X, Xiao X (2020) Development of aluminum alloy materials: current status, trend, and prospects. Chinese J Eng Sci 22(5):68. https://doi.org/10.15302/j-sscae-2020.05.013

    Article  Google Scholar 

  6. Guan R-G, Tie D (2017) A review on grain refinement of aluminum alloys: progresses, challenges and prospects. Acta Metall Sin (English Lett) 30(5):409–432. https://doi.org/10.1007/s40195-017-0565-8

    Article  Google Scholar 

  7. Chang Z, Su N, Wu Y, Lan Q, Peng L, Ding W (2020) Semi-solid rheoforming of magnesium alloys : a review. Mater Des 195:108990. https://doi.org/10.1016/j.matdes.2020.108990

    Article  Google Scholar 

  8. Jiang J, Zhang Y, Wang Y, Xiao G, Liu Y, Zeng L (2020) Microstructure and mechanical properties of thixoforged complex box-type component of 2A12 aluminum alloy. Mater Des 193:108859. https://doi.org/10.1016/j.matdes.2020.108859

    Article  Google Scholar 

  9. Rosso M, Peter I, Torino P (2013) New frontiers for thixoforming. Int J Microstruct Mater Prop 8:113

    Google Scholar 

  10. Salleh MS, Omar MZ, Syarif J, Mohammed MN (2013) An overview of semisolid processing of aluminium alloys. ISRN Mater Sci 2013:679820. https://doi.org/10.1155/2013/679820

  11. Ahmad AH, Naher S, Brabazon D (2014) The effect of direct thermal method, temperature and time on microstructure of a cast aluminum alloy. Mater Manuf Process 29(2):134–139. https://doi.org/10.1080/10426914.2013.822980

    Article  Google Scholar 

  12. Lee S-H, Saito Y, Sakai T, Utsunomiya H (Feb. 2002) Microstructures and mechanical properties of 6061 aluminum alloy processed by accumulative roll-bonding. Mater Sci Eng A 325:228–235. https://doi.org/10.1016/S0921-5093(01)01416-2

    Article  Google Scholar 

  13. Rovira MM, Lancini BC, Robert MH (1999) Thixo-forming of Al–Cu alloys. J Mater Process Technol 92–93:42–49. https://doi.org/10.1016/S0924-0136(99)00220-4

    Article  Google Scholar 

  14. Jiang J, Atkinson HV, Wang Y (2017) Microstructure and mechanical properties of 7005 aluminum alloy components formed by thixoforming. J Mater Sci Technol 33(4):379–388. https://doi.org/10.1016/j.jmst.2016.07.014

    Article  Google Scholar 

  15. Hultquist G, Leygraf C (1980) Materials science and engineering: an introduction. Mater Sci Eng An Introd 42(1):181

    Google Scholar 

  16. Bäckerud L, Chai G Tamminen J (1990) Solidification characteristics of aluminium alloys. Vol 2 foundry alloys. American Foundrymans Society/Skanaluminium

  17. Zaid AIO (2016) Effect of molybdenum addition to ZA22 grain refined by Ti+B on its metallurgical and mechanical characteristics. Int J Sci Eng Res 7(4):591–595. https://doi.org/10.14299/ijser.2016.04.006

    Article  Google Scholar 

  18. Lloyd DJ (Jan. 1994) Particle reinforced aluminium and magnesium matrix composites. Int Mater Rev 39(1):1–23. https://doi.org/10.1179/imr.1994.39.1.1

    Article  Google Scholar 

  19. Kashyap KT, Chandrashekar T (2001) Effects and mechanisms of grain refinement in aluminium alloys. Bull Mater Sci 24(4):345–353. https://doi.org/10.1007/BF02708630

    Article  Google Scholar 

  20. Al-Qawabah SMA, Zaid AIO (2016) Different methods for grain refinement of materials. Int J Sci Eng Res 7(7):1133–1140

    Google Scholar 

  21. Chokshi AH, Rosen A, Karch J, Gleiter H (1989) On the validity of the hall-petch relationship in nanocrystalline materials. Scr Metall 23(10):1679–1683. https://doi.org/10.1016/0036-9748(89)90342-6

    Article  Google Scholar 

  22. Granger DA, Liu J (1983) The occurrence, effect, and control of twinned columnar growth In aluminum alloys. JOM J Miner Met Mater Soc 35(6):54–59. https://doi.org/10.1007/BF03338303

    Article  Google Scholar 

  23. Easton MA, Qian M, St John DH (2011) “Grain refinement in alloys: novel approaches,” Encycl Mater Sci Technol, pp. 1–7. https://doi.org/10.1016/b978-0-08-043152-9.02259-4

  24. Ferrante M, Freitas E (Nov.1999) Rheology and microstructural development of a Al–4wt%Cu alloy in the semi-solid state. Mater Sci Eng A 271:172–180. https://doi.org/10.1016/S0921-5093(99)00226-9

    Article  Google Scholar 

  25. Edalati K et al (2022) Nanomaterials by severe plastic deformation: review of historical developments and recent advances. Mater Res Lett 10(4):163–256. https://doi.org/10.1080/21663831.2022.2029779

    Article  Google Scholar 

  26. Kulczyk M, Zysk B, Lewandowska M, Kurzydlowski KJ (2010) Grain refinement in CuCrZr by SPD processing. Phys Status Solidi Appl Mater Sci 207(5):1136–1138. https://doi.org/10.1002/pssa.200983378

    Article  Google Scholar 

  27. Boris B, Straumal R, Kulagin L. Klinger (2022) Structure refinement and fragmentation of precipitates under severe plastic deformation: a review. Materials (Basel) 15:2. https://doi.org/10.3390/ma15020601

    Article  Google Scholar 

  28. Kumar S, Ranjan V, Tripathy S (2022) “Materials today : proceedings study of severe plastic deformations of metallic materials : - a move towards amorphization,” Mater Today Proc, no. xxxx, pp. 2–8. https://doi.org/10.1016/j.matpr.2022.02.244

  29. Xu C, Horite Z, Furukawa M, Langdon TG (2004) Using equal-channel angular pressing for the production of superplastic aluminum and magnesium alloys. J Mater Eng Perform 13(6):683–690. https://doi.org/10.1361/10599490421385

    Article  Google Scholar 

  30. Molnár P, Jäger A, Lejček P (2012) Effect of temperature on grain refinement of Mg-3Al-1Zn alloy processed by equal channel angular pressing. Acta Phys Pol A 122(3):461–464. https://doi.org/10.12693/APhysPolA.122.461

    Article  Google Scholar 

  31. Valiev RZ, Ivanisenko YV, Rauch EF, Baudelet B (1996) Structure and deformaton behaviour of Armco iron subjected to severe plastic deformation. Acta Mater 44(12):4705–4712. https://doi.org/10.1016/S1359-6454(96)00156-5

    Article  Google Scholar 

  32. Langdon TG (2007) “The principles of grain refinement in equal-channel angular pressing,” vol. 462, pp. 3–11. https://doi.org/10.1016/j.msea.2006.02.473

  33. Valiev RZ, Langdon TG (2006) “Principles of equal-channel angular pressing as a processing tool for grain refinement,” vol. 51, pp. 881–981. https://doi.org/10.1016/j.pmatsci.2006.02.003

  34. Valiev RZ, Korznikov AV, Mulyukov RR (1993) Structure and properties of ultrafine-grained materials produced by severe plastic deformation. Mater Sci Eng A 168(2):141–148. https://doi.org/10.1016/0921-5093(93)90717-S

    Article  Google Scholar 

  35. Furukawa M, Horita Z, Nemoto M, Langdon TG (2001) Review: processing of metals by equal-channel angular pressing. J Mater Sci 36:2835–2843. https://doi.org/10.1023/A:1017932417043

    Article  Google Scholar 

  36. Moradi M, Nili-Ahmadabadi M, Heidarian B, Parsa MH (2008) Study of ECAP processing routes on semi-solid microstructure evolution of A356 alloy. Solid State Phenom 141–143:397–402. https://doi.org/10.4028/www.scientific.net/ssp.141-143.397

    Article  Google Scholar 

  37. Ashouri S, Nili-Ahmadabadi M, Moradi M, Iranpour M (2008) Semi-solid microstructure evolution during reheating of aluminum A356 alloy deformed severely by ECAP. J Alloys Compd 466(1–2):67–72. https://doi.org/10.1016/j.jallcom.2007.11.010

    Article  Google Scholar 

  38. Proni CTW, Torres LV, Haghayeghi R, Zoqui EJ (2016) Materials characterisation ECAP : an alternative route for producing AlSiCu for use in SSM processing. Mater Charact 118:252–262. https://doi.org/10.1016/j.matchar.2016.06.002

    Article  Google Scholar 

  39. Toofaninejad M, Nili-Ahmadabadi M, Shirazi H (2014) Microstructural evolution of semi-solid type 304 stainless steel deformed severely by ECAP. Solid State Phenom 217–218:99–104. https://doi.org/10.4028/www.scientific.net/SSP.217-218.99

    Article  Google Scholar 

  40. Lin HQ, Wang JG, Wang HY, Jiang QC (2007) Effect of predeformation on the globular grains in AZ91D alloy during strain induced melt activation (SIMA) process. J Alloys Compd 431(1):141–147. https://doi.org/10.1016/j.jallcom.2006.05.067

    Article  Google Scholar 

  41. Saito Y, Utsunomiya H, Tsuji N, Sakai T (1999) “Novel ultra-high straining process for bulk materials-development of the accumulative roll-bonding (ARB) process,” vol. 47, no. 2

  42. Gupta A, Chandrasekhar B, Saxena KK (2021) Effect of equal-channel angular pressing on mechanical properties : an overview. Mater Today Proc 45:5602–5607. https://doi.org/10.1016/j.matpr.2021.02.317

    Article  Google Scholar 

  43. Tsuji N, Saito Y, Utsunomiya H, Tanigawa S (1999) Ultra-fine grained bulk steel produced by accumulative roll-bonding (ARB) process. United States. https://doi.org/10.1016/S1359-6462(99)00015-9

  44. Ghalehbandi SM, Malaki M, Gupta M (2019) Accumulative roll bonding—a review. Appl Sci 9(17):3627. https://doi.org/10.3390/app9173627

    Article  Google Scholar 

  45. Tsuji N, Saito Y, Lee S-H, Minamino Y (2003) ARB (Accumulative Roll-Bonding) and other new techniques to produce bulk ultrafine grained materials. Adv Eng Mater 5:338–344. https://doi.org/10.1002/adem.200310077

    Article  Google Scholar 

  46. Jamaati R, Amirkhanlou S, Toroghinejad MR, Niroumand B (2011) Significant improvement of semi-solid microstructure and mechanical properties of A356 alloy by ARB process. Mater Sci Eng A 528(6):2495–2501. https://doi.org/10.1016/j.msea.2010.11.086

    Article  Google Scholar 

  47. Jamaati R, Amirkhanlou S, Toroghinejad MR, Niroumand B (2012) Comparison of the microstructure and mechanical properties of as-cast A356/SiC MMC processed by ARB and CAR methods. J Mater Eng Perform 21(7):1249–1253. https://doi.org/10.1007/s11665-011-0045-7

    Article  Google Scholar 

  48. Huang X, Tsuji N, Hansen N, Minamino Y (2003) Microstructural evolution during accumulative roll-bonding of commercial purity aluminum. Mater Sci Eng A 340:265–271. https://doi.org/10.1016/S0921-5093(02)00182-X

    Article  Google Scholar 

  49. Edalati K, Horita Z (2016) A review on high-pressure torsion (HPT) from 1935 to 1988. Mater Sci Eng A 652:325–352. https://doi.org/10.1016/j.msea.2015.11.074

    Article  Google Scholar 

  50. Sakai G, Horita Z, Langdon TG (2005) Grain refinement and superplasticity in an aluminum alloy processed by high-pressure torsion. Mater Sci Eng 393:344–351. https://doi.org/10.1016/j.msea.2004.11.007

  51. Wang X, Nie M, Ting C, Cai S, Gao N (2015) Microhardness and corrosion properties of hypoeutectic Al – 7Si alloy processed by high-pressure torsion. Mater Des 83:193–202. https://doi.org/10.1016/j.matdes.2015.06.018

    Article  Google Scholar 

  52. KrutsuwanNuphairode C, Fadhlina Mohamed I, Lamin F, W. Fathul Hakim Wan Zamri, M. Zaidi Omar, and Z. Horita (2020) The evolvement of mechanical properties and microstructure of commercial aluminum alloy 6061 via high-pressure torsion. J Kejuruter 32(3):531–538

    Google Scholar 

  53. Zhang X, Huang LK, Zhang B, Chen YZ, Liu F (2020) Microstructural evolution and strengthening mechanism of an Al–Si–Mg alloy processed by high-pressure torsion with different heat treatments. Mater Sci Eng A 794(December 2019):139932. https://doi.org/10.1016/j.msea.2020.139932

    Article  Google Scholar 

  54. Kawasaki M, Langdon TG (2008) The significance of strain reversals during processing by high-pressure torsion. Mater Sci Eng 498:341–348. https://doi.org/10.1016/j.msea.2008.08.021

  55. Zhilyaev AP, Langdon TG (2008) “Progress in materials science using high-pressure torsion for metal processing : fundamentals and applications,” vol. 53, no. March, pp. 893–979. https://doi.org/10.1016/j.pmatsci.2008.03.002

  56. Giordano L, Ramous E (1986) Rapid solidification of surface layers melted by CW Laser BT - laser surface treatment of metals. In: Draper CW, Mazzoldi P (eds). Springer Netherlands, Dordrecht, pp 483–495

  57. Dorin T, Vahid A, Lamb J (2018) Aluminium lithium alloys. In: Lumley RN (ed) Fundamentals of aluminium metallurgy. Woodhead Publishing, pp 387–438. https://doi.org/10.1016/B978-0-08-102063-0.00011-4

  58. Yu W et al (2021) 2022 “Solute inverse segregation behavior in twin roll casting of an Al-Cu alloy.” Scr Mater 213(April 2021):114592. https://doi.org/10.1016/j.scriptamat.2022.114592

    Article  Google Scholar 

  59. Zhang W, Ju D, Zhao H, Hu X, Yao Y, Zhang Y (2015) A decoupling control model on perturbation method for twin-roll casting magnesium alloy sheet. J Mater Sci Technol 31(5):517–522. https://doi.org/10.1016/j.jmst.2015.01.005

    Article  Google Scholar 

  60. Javaid A, Czerwinski F (2021) Progress in twin roll casting of magnesium alloys : a review. J Magnes Alloy 9(2):362–391. https://doi.org/10.1016/j.jma.2020.10.003

    Article  Google Scholar 

  61. Barekar NS, Dhindaw BK (2014) “Twin-roll casting of aluminum alloys – an overview twin-roll casting of aluminum alloys – an overview,” vol. 6914. https://doi.org/10.1080/10426914.2014.912307.

  62. Wang H, Zhou L, Zhang Y, Cai Y, Zhang J (2016) Journal of Materials Processing Technology Effects of twin-roll casting process parameters on the microstructure and sheet metal forming behavior of 7050 aluminum alloy. J Mater Process Tech 233:186–191. https://doi.org/10.1016/j.jmatprotec.2016.02.016

    Article  Google Scholar 

  63. Yun M, Lokyer S, Hunt J. D (2000) “Twin roll casting of aluminium alloys,” vol. 280, pp. 116–123

  64. Li B, Lavernia EJ (2016) Spray forming of MMCs, reference module in materials science and materials engineering. Elsevier. https://doi.org/10.1016/B978-0-12-803581-8.03884-4

  65. Shen J, Zeng S, Jiang Z, Cui C, Li Q (1994) Pressure characteristics at the tip of the metal delivery tube in a spray deposition process. In Advanced materials. Elsevier, pp 725–729. https://doi.org/10.1016/B978-0-444-81991-8.50177-1

  66. Boettinger WJ, Banerjee DK (2014) 7 - Solidification. In: Laughlin DE, Hono K (eds) Physical metallurgy, 5th edn. Elsevier, Oxford, pp 639–850. https://doi.org/10.1016/B978-0-444-53770-6.00007-1

  67. Srivastava VC, Mandal GK, Ciftci N, Uhlenwinkel V, Mädler L (2017) Processing of high-entropy AlCoCr0.75Cu0.5FeNi alloy by spray forming. J Mater Eng Perform 26(12):5906–5920. https://doi.org/10.1007/s11665-017-3071-2

    Article  Google Scholar 

  68. Grant PS (1995) Spray forming. Prog Mater Sci 39(4):497–545. https://doi.org/10.1016/0079-6425(95)00004-6

    Article  Google Scholar 

  69. Doherty RD (2001) Spray casting: fundamentals. In Encyclopedia of materials: science and technology. Elsevier, Oxford, pp 8776–8779. https://doi.org/10.1016/B0-08-043152-6/01573-4

  70. Mehmood A, Shah M, Sheikh NA, Qayyum JA, Khushnood S (2016) Grain refinement of ASTM A356 aluminum alloy using sloping plate process through gravity die casting. Alexandria Eng J 55(3):2431–2438. https://doi.org/10.1016/j.aej.2016.03.016

    Article  Google Scholar 

  71. Quested TE (2004) Understanding mechanisms of grain refinement of aluminium alloys by inoculation. Mater Sci Technol 20(11):1357–1369. https://doi.org/10.1179/026708304225022359

    Article  Google Scholar 

  72. Murty BS, Kori SA, Chakraborty M (2002) Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying. Int Mater Rev 47(1):3–29. https://doi.org/10.1179/095066001225001049

    Article  Google Scholar 

  73. Pandee P, Patakham U, Limmaneevichitr C (2017) Microstructural evolution and mechanical properties of Al-7Si-0.3Mg alloys with erbium additions. J Alloys Compd 728:844–853. https://doi.org/10.1016/j.jallcom.2017.09.054

    Article  Google Scholar 

  74. Hu X, Jiang F, Ai F, Yan H (2012) Effects of rare earth Er additions on microstructure development and mechanical properties of die-cast ADC12 aluminum alloy. J Alloys Compd 538:21–27. https://doi.org/10.1016/j.jallcom.2012.05.089

    Article  Google Scholar 

  75. Bozorgi S, Anders K, Baumgartner I (2019) Microstructures and mechanical properties of Er modified AA7075 alloy. Int J Cast Met Res 32(1):15–20. https://doi.org/10.1080/13640461.2018.1500123

    Article  Google Scholar 

  76. Peeratatsuwan C, Pandee P, Patakham U, Limmaneevichitr C (2021) Effect of erbium on the rheocast quality index of A356 semi-solid feedstock. Mater Sci Technol (United Kingdom) 37(4):424–438. https://doi.org/10.1080/02670836.2021.1908727

    Article  Google Scholar 

  77. Birol Y (2012) Effect of silicon content in grain refining hypoeutectic Al-Si foundry alloys with boron and titanium additions. Mater Sci Technol 28(4):385–389. https://doi.org/10.1179/1743284711Y.0000000049

    Article  Google Scholar 

  78. Chen Z, Kang H, Hua Fan G, Li JH (2016) Grain refinement of hypoeutectic Al-Si alloys with boron. Acta Mater 120:168–178. https://doi.org/10.1016/j.actamat.2016.08.045

    Article  Google Scholar 

  79. Xu Q, Ding X, Chen C, Zhou J, Xue F, Chen Q (2021) Role of erbium in microstructure and mechanical properties of Sn58Bi42 solder alloy. Mater Lett 305(August):130745. https://doi.org/10.1016/j.matlet.2021.130745

    Article  Google Scholar 

  80. Joy D, Aravindakshan R, Varrma NS (2021) Effect of zirconium additions on microstructure and mechanical properties of hot rolled Al-Mg alloys. Mater Today Proc 47:5098–5103. https://doi.org/10.1016/j.matpr.2021.05.284

    Article  Google Scholar 

  81. Salleh MS, Omar MZ, Syarif J (2015) The effects of Mg addition on the microstructure and mechanical properties of thixoformed Al-5%Si-Cu alloys. J Alloys Compd 621:121–130. https://doi.org/10.1016/j.jallcom.2014.09.152

    Article  Google Scholar 

  82. Peeratatsuwan C, Pandee P, Patakham U, Limmaneevichitr C (2021) Microstructure and rheological properties of a semi-solid A356 with erbium addition. J Rare Earths. https://doi.org/10.1016/j.jre.2021.06.011

    Article  Google Scholar 

  83. Alhawari KS, Omar MZ, Ghazali MJ, Salleh MS, Mohammed MN (2016) Dry sliding wear behaviour of thixoformed hypoeutectic Al-Si-Cu alloy with different amounts of magnesium. Compos Interfaces 23(6):519–531. https://doi.org/10.1080/09276440.2016.1164496

    Article  Google Scholar 

  84. Liu Z, Qiu D, Wang F, Taylor JA, Zhang M (2015) Grain refinement of cast zinc through magnesium inoculation: characterisation and mechanism. Mater Charact 106:1–10. https://doi.org/10.1016/j.matchar.2015.05.011

    Article  Google Scholar 

  85. Gandel DS, Birbilis N, Easton MA, Gibson MA (2010) Influence of manganese, zirconium and iron on the corrosion of magnesium. Australas Corros Assoc Preston, VIC 8:1–11

    Google Scholar 

  86. Edgar R, Schmid R, Grobner J (2006) Magnesium alloys and their applications

  87. Cao P, Qian M, Stjohn DH (2006) Effect of manganese on grain refinement of Mg-Al based alloys. Scr Mater 54(11):1853–1858. https://doi.org/10.1016/j.scriptamat.2006.02.020

    Article  Google Scholar 

  88. Zhao T, Hu Y, He B, Zhang C, Zheng T, Pan F (2019) Effect of manganese on microstructure and properties of Mg-2Gd magnesium alloy. Mater Sci Eng A 765(1):138292. https://doi.org/10.1016/j.msea.2019.138292

    Article  Google Scholar 

  89. Yu Z, Tang A, He J (2018) Effect of high content of manganese on microstructure, texture and mechanical properties of magnesium alloy. Mater Charact 136:310–317. https://doi.org/10.1016/j.matchar.2017.12.029

    Article  Google Scholar 

  90. Chaturvedi V, Sharma A, Pandel U (Apr. 2017) Effect of mechanical vibrations on grain refinement of AZ91 Mg alloy. Mater Res Express 4(4):46501. https://doi.org/10.1088/2053-1591/aa64f5

    Article  Google Scholar 

  91. Taghavi F, Saghafian H, Kharrazi Y (May 2009) Study on the effect of prolonged mechanical vibration on the grain refinement and density of A356 aluminum alloy. Mater Des - MATER Des 30:1604–1611. https://doi.org/10.1016/j.matdes.2008.07.032

    Article  Google Scholar 

  92. Jiang W, Chen X, Wang B, Fan Z, Wu H (2016) Effects of vibration frequency on microstructure, mechanical properties, and fracture behavior of A356 aluminum alloy obtained by expendable pattern shell casting. Int J Adv Manuf Technol 83(1–4):167–175. https://doi.org/10.1007/s00170-015-7586-0

    Article  Google Scholar 

  93. Limmaneevichitr C, Pongananpanya S, Kajornchaiyakul J (2009) Metallurgical structure of A356 aluminum alloy solidified under mechanical vibration: an investigation of alternative semi-solid casting routes. Mater Des 30(9):3925–3930. https://doi.org/10.1016/j.matdes.2009.01.036

    Article  Google Scholar 

  94. Guo HM, Zhang AS, Yang XJ, Yan MM (2014) Grain refinement of Al-5%Cu aluminum alloy under mechanical vibration using meltable vibrating probe. Oral Oncol 50(10):2489–2496. https://doi.org/10.1016/S1003-6326(14)63375-6

    Article  Google Scholar 

Download references

Funding

Universiti Malaysia Pahang and Centre for Automotive Engineering (AEC) for laboratory facilities and providing financial support under the Internal Research Grant of RDU210366.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written by Muhammad Faez Bin Mohamad Tajudin. The manuscript was supervised by Dr. Asnul Hadi Bin Ahmad, Dr. Juliawati Binti Alias, Mrs. Nur Azhani Binti Abd Razak, and Dr. Nasrul Azuan Bin Alang.

Corresponding author

Correspondence to Asnul Hadi Ahmad.

Ethics declarations

Ethics approval and consent to participate

The manuscript has not been submitted to any other journal for simultaneous consideration.

Consent for publication

The participants provided informed consent for the publication of their statements. All authors voluntarily agree to participate in this research study.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tajudin, M.F.M., Ahmad, A.H., Alias, J. et al. Grain refinement in semi-solid metal processing: current status and recent development. Int J Adv Manuf Technol 124, 1379–1399 (2023). https://doi.org/10.1007/s00170-022-10590-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-10590-9

Keywords

Navigation