Skip to main content
Log in

Plasma electrolytic polishing for improving the surface quality of zirconium-based bulk metallic glass

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Zr-based bulk metallic glass (Zr-based BMG) biomedical parts are polished to produce the clinically desired surfaces. In view of this, the present work proposes an environmentally friendly flexible plasma electrolytic polishing (PeP) technique for processing the Zr52.5Cu17.9Ni14.6Al10Ti5 BMG. The stable polishing process and the postelectrochemical composition changes of the Zr-based BMG were investigated, and the surface smoothing mechanism was thus revealed. The roughness and gloss of the polished surface were evaluated to optimize the electrolyte composition ratios and other important process parameters. The crystallization degree and corrosion resistance of the polished surfaces were examined to ensure the applicability of PeP for biomedical Zr-based BMGs. The results showed that a high voltage of 300–380 V led to the development of a steady vapor gaseous envelope and plasma channels for Zr-based BMG polishing. It was noted that the preferential plasma discharge of the high parts (Zr elements) during PeP reacted with the fluoride salt electrolyte and formed a water-soluble zirconium fluoride (ZrF4). Moreover, by using an optimal electrolyte with 3% ammonium salt and 0.1% fluoride salt, the workpiece could be polished efficiently without crystallization. Overall, the surface roughness of the workpiece after the PEP was reduced by 8 times, while the gloss was increased by 10 times and the surface corrosion resistance was enhanced remarkably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Not applicable here.

Code availability

Not applicable.

References

  1. Bauer S, Schmuki P, Mark KVD, Park J (2013) Engineering biocompatible implant surfaces: part I: materials and surfaces. Prog Mater Sci 58(3):261–326. https://doi.org/10.1016/j.pmatsci.2012.09.001

    Article  Google Scholar 

  2. Yang K, Shi JR, Wang L, Chen YZ, Liang CY, Yang L, Wang LN (2022) Bacterial anti-adhesion surface design: surface patterning, roughness and wettability: a review. J Mater Sci Technol 99:82–100. https://doi.org/10.1016/j.jmst.2021.05.028

    Article  Google Scholar 

  3. Zeidler H, Boettger-Hiller F, Edelmann J, Schubert A (2016) Surface finish machining of medical parts using plasma electrolytic polishing. Procedia CIRP 49:83–87. https://doi.org/10.1016/j.procir.2015.07.038

    Article  Google Scholar 

  4. Wang WH, Dong C, Shek CH (2004) Bulk metallic glass. Mat Sci Eng R 44(2):45–89. https://doi.org/10.1016/j.mser.2004.03.001

    Article  Google Scholar 

  5. Wang WH (2022) Development and implication enlightenment of amorphous alloys. Bull Chin Acad Sci 37(3):352–359. https://doi.org/10.16418/j.issn.1000-3045.20211208008

    Article  Google Scholar 

  6. Li HF, Zheng YF (2016) Recent advances in bulk metallic glasses for biomedical applications. Acta Biomater 36:1–20. https://doi.org/10.1016/j.actbio.2016.03.047

    Article  Google Scholar 

  7. Meagher P, O’Cearbhaill ED, Byrne JH, Browne DJ (2016) Bulk metallic glasses for implantable medical devices and surgical tools. Adv Mater 28(27):5755–5762. https://doi.org/10.1002/adma.201505347

    Article  Google Scholar 

  8. Sun K, Fu R, Liu XW, Xu LM, Wang G, Chen SY, Zhai QJ, Pauly S (2022) Osteogenesis, and angiogenesis of a bulk metallic glass for biomedical implants. Bioact Mater 8:253–266. https://doi.org/10.1016/j.bioactmat.2021.06.018

    Article  Google Scholar 

  9. Liu LH, Zhang T, Liu ZY, Yu CY, Dong XX, He LJ, Gao K, Zhu XG, Li WH, Wang CY, Li PJ, Zhang LC, Li L (2018) Near-net forming complex shaped Zr-based bulk metallic glasses by high pressure die casting. Mater 11(11):2338. https://doi.org/10.3390/ma11112338

    Article  Google Scholar 

  10. Maroju NK, Yan DP, Xie BY, Jin XL (2018) Investigations on surface microstructure in high-speed milling of Zr-based bulk metallic glass. J Manuf Process 35:40–50. https://doi.org/10.1016/j.jmapro.2018.07.020

    Article  Google Scholar 

  11. Chen SH, Ge Q, Zhang JS, Chang WJ, Zhang JC, Tang HH, Yang HD (2021) Low-speed machining of a Zr-based bulk metallic glass. J Manuf Process 72:565–581. https://doi.org/10.1016/j.jmapro.2021.10.055

    Article  Google Scholar 

  12. Zhang FL, Huang GW, Liu JM, Du ZJ, Wang CY (2021) Grinding performance and wear of metal bond super-abrasive tools in grinding of Zr-based bulk metallic glass. Int J Refract Met H 97(9):105501. https://doi.org/10.1016/j.ijrmhm.2021.105501

    Article  Google Scholar 

  13. Shiou FJ, Loc PH, Dang NH (2013) Surface finish of bulk metallic glass using sequential abrasive jet polishing and annealing processes. Int J Adv Manuf Technol 66:1523–1533. https://doi.org/10.1007/s00170-012-4436-1

    Article  Google Scholar 

  14. Li T, Guo Y, Mizutani M, Xu SL (2021) Surface smoothing of bulk metallic glasses by femtosecond laser double-pulse irradiation. Surf Coat Tech 408:126803. https://doi.org/10.1016/j.surfcoat.2020.126803

    Article  Google Scholar 

  15. Koza JA, Sueptitz R, Uhlemann M, Schultz L, Gebert A (2011) Electrochemical micromachining of a Zr-based bulk metallic glass using a micro-tool electrode technique. Intermetallics 19(4):437–444. https://doi.org/10.1016/j.intermet.2010.10.025

    Article  Google Scholar 

  16. Nestler K, Böttger-Hiller F, Adamitzki W, Glowa G, Zeidler H, Schubert A (2016) Plasma electrolytic polishing—an overview of applied technologies and current challenges to extend the polishable material range. Procedia CIRP 42:503–507. https://doi.org/10.1016/j.procir.2016.02.240

    Article  Google Scholar 

  17. Navickaitė K, Ianniciello L, Tušek J, Engelbrecht K, Bahl CRH, Penzel M, Nestler K, Böttger-Hiller F, Zeidler H (2021) Plasma electrolytic polishing of nitinol: investigation of functional properties. Mater 14:6450. https://doi.org/10.3390/ma14216450

    Article  Google Scholar 

  18. Wang J, Suo LC, Guan LL, Fu YL (2012) Analytical study on mechanism of electrolysis and plasma polishing. Adv Mater Res 472–475:350–353. https://doi.org/10.4028/www.scientific.net/AMR.472-475.350

    Article  Google Scholar 

  19. Belkin PN, Kusmanov SA, Parfenov EV (2020) Mechanism and technological opportunity of plasma electrolytic polishing of metals and alloys surfaces. Appl Surf Sci Adv 1:100016. https://doi.org/10.1016/j.apsadv.2020.100016

    Article  Google Scholar 

  20. Huang Y, Wang CY, Ding F, Yang Y, Zhang T, He XL, Zheng LJ, Li NT (2021) Principle, process, and application of metal plasma electrolytic polishing: a review. Int J Adv Manuf Technol 114:1893–1912. https://doi.org/10.1007/s00170-021-07012-7

    Article  Google Scholar 

  21. Wang J, Suo LC, Guan LL, Fu YL (2012) Optimization of processing parameters for electrolysis and plasma polishing. Appl Mech Mater 217–219:1368–1371. https://doi.org/10.4028/www.scientific.net/AMM.217-219.1368

    Article  Google Scholar 

  22. Belkin PN, Silkin SA, D’yakov IG, Burov SV, Kusmanov SA (2020) Influence of plasma electrolytic polishing conditions on surface roughness of steel. Surf Eng Appl Elect+ 56(1):55–62. https://doi.org/10.3103/S1068375520010032

    Article  Google Scholar 

  23. Zhou CQ, Su HH, Qian N, Zhang Z, Xu JH (2022) Characteristics and function of vapour gaseous envelope fluctuation in plasma electrolytic polishing. Int J Adv Manuf Technol 119:7815–7825. https://doi.org/10.1007/s00170-021-08606-x

    Article  Google Scholar 

  24. Danilov I, Paul R, Hackert-Oschätzchen M, Zinecker M, Quitzke S, Schubert A (2020) Random sequential simulation of the resulting surface roughness in plasma electrolytic polishing of stainless steel. Procedia CIRP 95:981–986. https://doi.org/10.1016/j.procir.2020.02.255

    Article  Google Scholar 

  25. Ji GG, Sun HW, Duan HD, Yang DL, Sun JY (2021) Effect of electrolytic plasma polishing on microstructural evolution and tensile properties of 316L stainless steel. Surf Coat Tech 420:127330. https://doi.org/10.1016/j.surfcoat.2021.127330

    Article  Google Scholar 

  26. Quitzke S, Kroning O, Safranchik D, Zeidler H, Danilov I, Martin A, Böttger-Hiller F, Essel S, Schubert A (2022) Design and setup of a jet-based technology for localized small scale plasma electrolytic polishing. J Manuf Process 75:1123–1133. https://doi.org/10.1016/j.jmapro.2022.01.064

    Article  Google Scholar 

  27. Spica A, Roche J, Arurault L, Horville M, Rolet J (2021) Evolution of model roughness on quasi-pure aluminum during plasma electrolytic polishing. Surf Coat Tech 428:127839. https://doi.org/10.1016/j.surfcoat.2021.127839

    Article  Google Scholar 

  28. Smyslova MK, Tamindarov DR, Plotnikov NV, Modina IM, Semenova IP (2019) Surface electrolytic-plasma polishing of Ti-6Al-4V alloy with ultrafine-grained structure produced by severe plastic deformation. IOP Conf Ser: Mater Sci 461:012079. https://doi.org/10.1088/1757-899X/461/1/012079

    Article  Google Scholar 

  29. Kusmanov SA, Tambovskiy IV, Silkin SA, Nikiforov RV, Belkin PN (2020) The effect of plasma electrolytic polishing on the surface properties of titanium alloy after plasma electrolytic chemical-thermal treatment. IOP Conf Ser: Mater Sci 919:022028. https://doi.org/10.1088/1757-899X/919/2/022028

    Article  Google Scholar 

  30. Aliakseyeu Y, Bubulis A, Minchenya V, Korolyvo A, Niss V, Janutiene KR (2021) Plasma electrolyte polishing of titanium and niobium alloys in low concentrated salt solution based electrolyte. Mechanika 27(1):88–93. https://doi.org/10.5755/J02.MECH.25044

    Article  Google Scholar 

  31. Zhou CQ, Qian N, Su HH, Zhang Z, Ding WF, Xu JH (2022) Effect of energy distribution on the machining efficiency and surface morphology of Inconel 718 nickel-based superalloy using plasma electrolytic polishing. Surf Coat Tech 441:128506. https://doi.org/10.1016/j.surfcoat.2022.128506

    Article  Google Scholar 

  32. Zeidler H, Böttger T, Schröder S, Schneider M, Lämmel C, Sahr F, Tardelli J, Exbrayat L (2022) Analysis of plasma-electrolytic polishing process initiation. Procedia CIRP 108:782–786. https://doi.org/10.1016/j.procir.2022.03.121

    Article  Google Scholar 

  33. Seo B, Park H, Park KB, Kang H, Park K (2021) Effect of hydrogen peroxide on Cr oxide formation of additive manufactured CoCr alloys during plasma electrolytic polishing. Mater Lett 294:129736. https://doi.org/10.1016/j.matlet.2021.129736

    Article  Google Scholar 

  34. Vopát T, Podhorský Š, Sahul M, Haršáni M (2019) Cutting edge preparation of cutting tools using plasma discharges in electrolyte. J Manuf Process 46:234–240. https://doi.org/10.1016/j.jmapro.2019.08.033

    Article  Google Scholar 

  35. An S, Foest R, Fricke K, Riemer H, Fröhlich M, Quade A, Schäfer J, Weltmann K, Kersten H (2021) Pretreatment of cutting tools by plasma electrolytic polishing (PEP) for enhanced adhesion of hard coatings. Surf Coat Tech 405:126504. https://doi.org/10.1016/j.surfcoat.2020.126504

    Article  Google Scholar 

  36. Wang CY, He XL, Li NT, Gao K, Zhang T, Zheng LJ (2018) Patent’s name is amorphous alloy polishing solution and amorphous alloy polishing method. Invention Number is CN108660504

  37. Sinha S, Badrinarayanan S, Sinha APB (1986) Interaction of oxygen with Zr76Fe24 metglass: an X-ray photoelectron spectroscopy study. J Less-common Met 125:85–95. https://doi.org/10.1016/0022-5088(86)90082-2

    Article  Google Scholar 

  38. Hu MZC, Payzant EA, Booth KR, Rawn CJ, Hunt RD, Allard LF (2003) Ultrafine microsphere particles of zirconium titanate produced by homogeneous dielectric-tuning coprecipitation. J Mater Sci 38(18):3831–3844. https://doi.org/10.1023/A:1025900804268

    Article  Google Scholar 

  39. Nefedov VI, Salyn YV, Chertkov AA, Padurets L (1974) The X-ray electronic study of the distribution of electron density in transition element hydrides. Zh Neorg Khim 19:1443–1445

    Google Scholar 

  40. Bosman HJM, Pijpers AP, Jaspers AWMA (1996) An X-ray photoelectron spectroscopy study of the acidity of SiO2-ZrO2 mixed oxides. J Catal 161:551–1445. https://doi.org/10.1006/jcat.1996.0217

    Article  Google Scholar 

  41. Jolley JG, Geesey GG, Hankins MR, Wright RB, Wichlacz PL (1989) Auger electron and X-ray photoelectron spectroscopic study of the biocorrosion of copper by alginic acid polysaccharide. Appl Surf Sci 37(4):469–480. https://doi.org/10.1016/0169-4332(89)90505-9

    Article  Google Scholar 

  42. Strohmeier BR, Leyden DE, Field RS, Hercules DM (1985) Surface spectroscopic characterization of Cu/Al2O3 catalysts. J Catal 94(2):514–530. https://doi.org/10.1016/0021-9517(85)90216-7

    Article  Google Scholar 

  43. Veprek S, Cocke DL, Kehl S, Oswald HR (1986) Mechanism of the deactivation of Hopcalite catalysts studied by XPS, ISS, and other techniques. J Catal 100(1):250–263. https://doi.org/10.1016/0021-9517(86)90090-4

    Article  Google Scholar 

  44. Salvati L, Makovsky LE, Stencel JM, Brown FR, Hercules DM (1981) Surface spectroscopic study of tungsten-alumina catalysts using X-ray photoelectron, ion scattering, and Raman spectroscopies. J Phys Chem 85(24):3700–3707. https://doi.org/10.1021/j150624a035

    Article  Google Scholar 

  45. Sleigh C, Pijpers AP, Jaspers A, Coussens B, Meier RJ (1996) On the determination of atomic charge via ESCA including application to organometallics. J Electron Spectrosc Relat Phenom 77(41):41–57. https://doi.org/10.1016/0368-2048(95)02392-5

    Article  Google Scholar 

  46. Colón JL, Thakur DS, Yang CY, Clearfield A, Martini CR (1990) X-ray photoelectron spectroscopy and catalytic activity of α-zirconium phosphate and zirconium phosphate sulfophenylphosphonate. J Catal 124(1):148–159. https://doi.org/10.1016/0021-9517(90)90111-V

    Article  Google Scholar 

  47. Wang JG, Choi BW, Nieh TG, Liu CT (2000) Crystallization and nanoindentation behavior of a bulk Zr–Al–Ti–Cu–Ni amorphous alloy. J Mater Res 15(3):798–807. https://doi.org/10.1557/JMR.2000.0114

    Article  Google Scholar 

  48. Siddaiah A, Ramachandran R, Menezes PL (2021) Tribocorrosion: fundamentals, methods, and materials. Academic Press, London, San Diego, Cambridge, Oxford

    Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant no. 51735003 within the framework of the Key Program) and the Guangdong Science and Technology Department of China (grant no. 2019B030302010 within the framework of the Key Basic and Applied Research Program).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the research and review of the paper. Chengyong Wang developed the conception of the study. Chengyong Wang and Feng Ding performed the analyses and wrote and revised the paper. Yangjia Li participated in writing the paper. Tao Zhang, Xiaolin He, and Yu Huang worked on the experiments and data analyses. Xuguang Zhu and Kuan Gao performed the analysis with constructive discussions.

Corresponding author

Correspondence to Chengyong Wang.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Ding, F., Li, Y. et al. Plasma electrolytic polishing for improving the surface quality of zirconium-based bulk metallic glass. Int J Adv Manuf Technol 124, 2079–2093 (2023). https://doi.org/10.1007/s00170-022-10588-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-10588-3

Keywords

Navigation