Skip to main content

Advertisement

Log in

CuCr/Cu contact material fabricated via high-speed laser cladding

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

As one of the most widely used contact materials, CuCr alloys put forward higher requirements for their comprehensive properties, especially the resistance to arc erosion under the demand of miniaturization. In this work, a hetero-structured CuCr/Cu contact with metallurgical bonding was successfully fabricated by high-speed laser cladding. The fabrication process was investigated, and the optimized process window was determined. The CuCr layer is free of cracks and contains about 48 wt.% Cr. The average size of Cr particles is 0.82 μm, and the Cu grains grow epitaxially across the CuCr/Cu interface. The shear strength of the interface is as high as 223.3 MPa. The hardness of the aged CuCr layer is much higher than the commercial CuCr alloy, while both materials have similar electrical conductivities. The aged CuCr/Cu contact has the lower arc erosion rate and the wear rate than the commercial CuCr contact. The excellent performances of the CuCr/Cu contact are attributed to the hetero-structure design and the metallurgical bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. Kraft O, Wenzel W, Wöll C (2019) Materials research in the information age. Adv Mater 31:e1902591–e1902591. https://doi.org/10.1002/adma.201902591

    Article  Google Scholar 

  2. Dimitrijev S, Han J, Moghadam HA et al (2015) Power-switching applications beyond silicon: status and future prospects of SiC and GaN devices. MRS Bull 40:399–405. https://doi.org/10.1557/mrs.2015.89

    Article  Google Scholar 

  3. Gao S, Yi XH, Shang J et al (2019) Organic and hybrid resistive switching materials and devices. Chem Soc Rev 48:1531–1565. https://doi.org/10.1039/C8CS00614H

    Article  Google Scholar 

  4. Xiu SX, Yang R, Xue J et al (2011) Microstructure and properties of CuCr contact materials with different Cr content. Trans Nonferrous Metals Soc China 21:s389–s393. https://doi.org/10.1016/S1003-6326(11)61612-9

    Article  Google Scholar 

  5. Szemkus S, Kempf B, Jahn S et al (2018) Laser additive manufacturing of contact materials. J Mater Process Technol 252:612–617. https://doi.org/10.1016/j.jmatprotec.2017.09.023

    Article  Google Scholar 

  6. Deng J, Wang L, Zhang X et al (2018) Modeling of CuCr contact vacuum arc with consideration of its components. AIP Adv 8:125213. https://doi.org/10.1063/1.5055699

    Article  Google Scholar 

  7. Chang Y, Zheng W, Zhou Z et al (2016) Preparation and performance of Cu-Cr contact materials for vacuum switches with low contact pressure. J Electron Mater 45:5647–5654. https://doi.org/10.1007/s11664-016-4782-0

    Article  Google Scholar 

  8. Zhou Z, Wang Y, Gao J et al (2005) Microstructure of rapidly solidified Cu–25 wt.% Cr alloys. Mater Sci Eng A 398:318–322. https://doi.org/10.1016/j.msea.2005.03.095

    Article  Google Scholar 

  9. Gao J, Wang Y, Zhou Z et al (2007) Phase separation in undercooled Cu–Cr melts. Mater Sci Eng A 449:654–657. https://doi.org/10.1016/j.msea.2006.02.379

    Article  Google Scholar 

  10. Si SH, Zhang H, He YZ et al (2015) Liquid phase separation and the aging effect on mechanical and electrical properties of laser rapidly solidified Cu100-x Crx alloys. Metals 5:2119–2127. https://doi.org/10.3390/met5042119

    Article  Google Scholar 

  11. Zhao Q, Shao Z, Liu C et al (2014) Preparation of Cu–Cr alloy powder by mechanical alloying. J Alloys Compd 607:118–124. https://doi.org/10.1016/j.jallcom.2014.04.054

    Article  Google Scholar 

  12. Li P, Wang X, Yao X et al (2018) Comparison of electrical performance of CuCr contact materials manufactured by two methods, in: 28th ISDEIV, IEEE 607–610. https://doi.org/10.1109/DEIV.2018.8537096

  13. Cao WC, Liang SH, Zhang X et al (2011) Effect of Fe on microstructures and vacuum arc characteristics of CuCr alloys. Int J Refract Met Hard Mater 29:237–243. https://doi.org/10.1016/j.ijrmhm.2010.10.012

    Article  Google Scholar 

  14. Kai L, Miao XJ, Qian D et al (2021) Arc erosion resistance of CuCrMo films deposited via magnetron sputtering. Mater Res Express 8:066402. https://iopscience.iop.org/article/10.1088/2053-1591/ac0179/meta

  15. Yu M, Wang Y, Wang Y (2009) Effect of Ti-Zr addition on the microstructure and the arc chopping current of melt-spun CuCr ribbon. Vacuum 83:980–983. https://doi.org/10.1016/j.vacuum.2008.11.009

    Article  Google Scholar 

  16. Yang Z, Zhang Q, Wang Q et al (2006) Vacuum arc characteristics on nanocrystalline CuCr alloys. Vacuum 81:545–549. https://doi.org/10.1016/j.vacuum.2006.07.016

    Article  Google Scholar 

  17. Zhao L, Li Z, Shi K et al (2013) Electrical properties of nanocrystalline CuCr25 contact material. IEEE Trans Compon Pack Manuf Technol 3:625–632. https://doi.org/10.1109/tcpmt.2012.2225062

    Article  Google Scholar 

  18. Lala S, Gupta A, Srivastava C (2022) Evolution of texture, strain, and grain boundary constitution in copper–chromium coatings and its effect on coating corrosion behavior. Metall Mater Trans A 53:679–688. https://doi.org/10.1007/s11661-021-06545-6

    Article  Google Scholar 

  19. Baker M, Kench P, Joseph M et al (2003) The nanostructure and mechanical properties of PVD CrCu (N) coatings. Surf Coat Technol 162:222–227. https://doi.org/10.1016/S0257-8972(02)00571-6

    Article  Google Scholar 

  20. Chang Y, Mohanty P, Karmarkar N et al (2020) Microstructure and properties of Cu–Cr coatings deposited by cold spraying. Vacuum 171:109032

    Article  Google Scholar 

  21. Cui R, Han Y, Zhu Z et al (2019) Investigation of the structure and properties of electrodeposited Cu/graphene composite coatings for the electrical contact materials of an ultrahigh voltage circuit breaker. J Alloys Compd 777:1159–1167. https://doi.org/10.1016/j.jallcom.2018.11.096

    Article  Google Scholar 

  22. Mellali M, Fauchais P, Grimaud A (1996) Influence of substrate roughness and temperature on the adhesion/cohesion of alumina coatings. Surf Coat Technol 81:275–286. https://doi.org/10.1016/0257-8972(95)02540-5

    Article  Google Scholar 

  23. Kromer R, Costil S, Verdy C et al (2018) Laser surface texturing to enhance adhesion bond strength of spray coatings–cold spraying, wire-arc spraying, and atmospheric plasma spraying. Surf Coat Technol 352:642–653. https://doi.org/10.1016/j.surfcoat.2017.05.007

    Article  Google Scholar 

  24. Yang S, Phung TA (2018) Microstructure and properties of Cu/TiB2 wear resistance composite coating on H13 steel prepared by in-situ laser cladding. Opt Laser Technol 108:480–486. https://doi.org/10.1016/j.optlastec.2018.07.036

    Article  Google Scholar 

  25. Li Y, Dong S, Yan S et al (2018) Surface remanufacturing of ductile cast iron by laser cladding Ni-Cu alloy coatings. Surf Coat Technol 347:20–28. https://doi.org/10.1016/j.surfcoat.2018.04.065

    Article  Google Scholar 

  26. Li Y, Dong S, He P et al (2019) Microstructure characteristics and mechanical properties of new-type FeNiCr laser cladding alloy coating on nodular cast iron. J Mater Process Technol 269:163–171. https://doi.org/10.1016/j.jmatprotec.2019.02.010

    Article  Google Scholar 

  27. Liu J, Liu H, Tian X et al (2020) Microstructural evolution and corrosion properties of Ni-based alloy coatings fabricated by multi-layer laser cladding on cast iron. J Alloys Compd 822:153708. https://doi.org/10.1016/j.jallcom.2020.153708

    Article  Google Scholar 

  28. Wang Q, Spencer K, Birbilis N et al (2010) The influence of ceramic particles on bond strength of cold spray composite coatings on AZ91 alloy substrate. Surf Coat Technol 205:50–56. https://doi.org/10.1016/j.surfcoat.2010.06.008

    Article  Google Scholar 

  29. Guan W, Yuan J, Lv H et al (2020) Chromium, a promising cathode candidate for homogeneous arc erosion in air. J Phys D: Appl Phys 54:025304. https://doi.org/10.1088/1361-6463/abbf77

  30. Xie H, Guan W, Lv H et al (2022) W-Cu/Cu composite electrodes fabricated via laser surface alloying. Mater Charact 111715. https://doi.org/10.1016/j.matchar.2021.111715

  31. Gou S, Li S, Hu H et al (2021) Surface hardening of CrCoFeNi high-entropy alloys via Al laser alloying. Mater Res Lett 9:437–444. https://doi.org/10.1080/21663831.2021.1968524

    Article  Google Scholar 

  32. Franz R, Wiedemann G (1853) Ueber die Wärme-Leitungsfähigkeit der Metalle. Ann Phys 165:497–531. https://doi.org/10.1002/andp.18531650802

    Article  Google Scholar 

  33. Schopphoven T, Gasser A, Wissenbach K et al (2016) Investigations on ultra-high-speed laser material deposition as alternative for hard chrome plating and thermal spraying. J Laser Appl 28:022501. https://doi.org/10.2351/1.4943910

    Article  Google Scholar 

  34. Lampa C, Smirnov I (2019) High speed laser cladding of an iron based alloy developed for hard chrome replacement. J Laser Appl 31:022511. https://doi.org/10.2351/1.5096142

    Article  Google Scholar 

  35. Toyserkani E, Khajepour A, Corbin SF (2004) Laser cladding. CRC Press. https://doi.org/10.1201/9781420039177

    Article  Google Scholar 

  36. Zhang L, Yu G, Li S et al (2019) The effect of laser surface melting on grain refinement of phase separated Cu-Cr alloy. Opt Laser Technol 119:105577. https://doi.org/10.1016/j.optlastec.2019.105577

    Article  Google Scholar 

  37. Wu X, Zhu B, Zeng X et al (1996) Critical state of laser cladding with powder auto-feeding. Surf Coat Technol 79:200–204. https://doi.org/10.1016/0257-8972(95)02452-2

    Article  Google Scholar 

  38. Wei X, Wang J, Yang Z et al (2011) Liquid phase separation of Cu–Cr alloys during the vacuum breakdown. J Alloys Compd 509:7116–7120. https://doi.org/10.1016/j.jallcom.2011.04.017

    Article  Google Scholar 

  39. Zeng K, Hämäläinen M (1995) A theoretical study of the phase equilibria in the Cu□ Cr□ Zr system. J Alloys Compd 220:53–61. https://doi.org/10.1016/0925-8388(94)06029-0

    Article  Google Scholar 

  40. Wang Y, Song X, Sun Z et al (2007) The solidification of CuCr alloys under various cooling rates. Mater Sci Poland 25:199–207. https://www.materialsscience.pwr.wroc.pl/bi/vol25no1/articles/ms_2006_035.pdf

  41. Wang F, von Klinski-Wetzel K, Mukherjee R et al (2015) Experimental and numerical investigation on the phase separation affected by cooling rates and marangoni convection in Cu-Cr alloys. Metall Mater Trans A 46:1756–1766. https://doi.org/10.1007/s11661-015-2745-3

    Article  Google Scholar 

  42. Sun Z, Wang Y, Guo J et al (2007) Liquid and solid phase separation during melt spinning and annealing in melt-spun Cu–Cr ribbons. Mater Sci Eng A 452:411–416. https://doi.org/10.1016/j.msea.2006.10.112

    Article  Google Scholar 

  43. Sun Z-b, Wang Y-H, Juan G (2006) Liquid phase separation of Cu-Cr alloys during rapid cooling. Trans Nonferrous Met Soc China 16:998–1002. https://doi.org/10.1016/S1003-6326(06)60367-1

    Article  Google Scholar 

  44. Zhou Z, Gao J, Li F et al (2009) On the metastable miscibility gap in liquid Cu–Cr alloys. J Mater Sci 44:3793–3799. https://doi.org/10.1007/s10853-009-3511-y

    Article  Google Scholar 

  45. Peng L, Xie H, Huang G et al (2017) The phase transformation and strengthening of a Cu-0.71 wt% Cr alloy. J Alloys Compd 708:1096–1102. https://doi.org/10.1016/j.jallcom.2017.03.069

    Article  Google Scholar 

  46. Yang H, Bu Y, Wu J et al (2022) Nanocompound-induced anti-softening mechanisms: application to CuCr alloys. Mater Sci Eng, A 841:143038. https://doi.org/10.1016/j.msea.2022.143038

    Article  Google Scholar 

  47. Guan W, Yuan J, Lv H et al (2021) Homogeneous arc ablation behaviors of CuCr cathodes improved by chromic oxide. J Mater Sci Technol 81:1–12. https://doi.org/10.1016/j.jmst.2020.10.083

    Article  Google Scholar 

  48. Huang B, Song C, Liu Y et al (2017) Microstructure characterization and wear-resistant properties evaluation of an intermetallic composite in Ni–Mo–Si system. Materials 10:130. https://doi.org/10.3390/ma10020130

    Article  Google Scholar 

  49. Bourithis L, Papadimitriou G (2009) The effect of microstructure and wear conditions on the wear resistance of steel metal matrix composites fabricated with PTA alloying technique. Wear 266:1155–1164. https://doi.org/10.1016/j.wear.2009.03.032

    Article  Google Scholar 

  50. Li L, Shen F, Zhou Y et al (2019) Comparative study of stainless steel AISI 431 coatings prepared by extreme-high-speed and conventional laser cladding. J Laser Appl 31:042009. https://doi.org/10.2351/1.5094378

    Article  Google Scholar 

  51. Hummel M, Schöler C, Häusler A et al (2020) New approaches on laser micro welding of copper by using a laser beam source with a wavelength of 450 nm. J Adv Joining Processes 1:100012. https://doi.org/10.1016/j.jajp.2020.100012

    Article  Google Scholar 

  52. Zhang Q, Wang Z, Hu F et al (2019) Preparation of thin NiCrBSi laser cladding layers with no microcracking and low dilution. J Laser Appl 31:032015. https://doi.org/10.2351/1.5087773

    Article  Google Scholar 

  53. Nie M, Zhang S, Wang Z et al (2022) Effect of laser power on microstructure and interfacial bonding strength of laser cladding 17–4PH stainless steel coatings. Mater Chem Phys 275:125236. https://doi.org/10.1016/j.matchemphys.2021.125236

    Article  Google Scholar 

  54. Wang D, Yang Y, Liu R et al (2013) Study on the designing rules and processability of porous structure based on selective laser melting (SLM). J Mater Process Technol 213:1734–1742. https://doi.org/10.1016/j.jmatprotec.2013.05.001

    Article  Google Scholar 

  55. Song B, Yu T, Jiang X et al (2021) Development mechanism and solidification morphology of molten pool generated by laser cladding. Int J Therm Sci 159:106579. https://doi.org/10.1016/j.ijthermalsci.2020.106579

    Article  Google Scholar 

  56. Shangina D, Gubicza J, Dodony E et al (2014) Improvement of strength and conductivity in Cu-alloys with the application of high pressure torsion and subsequent heat-treatments. J Mater Sci 49:6674–6681. https://doi.org/10.1007/s10853-014-8339-4

    Article  Google Scholar 

  57. Jin Y, Adachi K, Takeuchi T et al (1997) Correlation between the electrical conductivity and aging treatment for a Cu-15 wt% Cr alloy composite formed in-situ. Mater Lett 32:307–311. https://doi.org/10.1016/S0167-577X(97)00053-0

    Article  Google Scholar 

  58. Groh S, Devincre B, Kubin L et al (2005) Size effects in metal matrix composites. Mater Sci Eng, A 400:279–282. https://doi.org/10.1016/j.msea.2005.03.062

    Article  Google Scholar 

  59. Yang H, Bu Y, Wu J et al (2022) High strength, high conductivity and good softening resistance Cu-Fe-Ti alloy. J Alloys Compd 925:166595. https://doi.org/10.1016/j.jallcom.2022.166595

    Article  Google Scholar 

  60. Shao I, Vereecken P, Chien C et al (2002) Synthesis and characterization of particle-reinforced Ni/Al2O3 nanocomposites. J Mater Res 17:1412–1418. https://doi.org/10.1557/JMR.2002.0210

    Article  Google Scholar 

  61. Wang X, Feng F, Klecka MA et al (2015) Characterization and modeling of the bonding process in cold spray additive manufacturing. Addit Manuf 8:149–162. https://doi.org/10.1016/j.addma.2015.03.006

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China (No. 2021YFB2500600) and the National Natural Science Foundation of China (Nos. 11725210, 51827810, and 51977193).

Author information

Authors and Affiliations

Authors

Contributions

Hongbin Xie: investigation, data curation, writing—original draft, review, and editing. Weimian Guan; methodology, writing—original draft, review, and editing; Hao Lv: visualization; Mingyu Gao: resources; Xinying Liu: data curation; Huiya Yang: validation; Youtong Fang: conceptualization; Jiabin Liu: conceptualization, writing—review, and editing; Weiping Dong: data curation and supervision; Hongtao Wang: conceptualization and supervision.

Corresponding authors

Correspondence to Jiabin Liu, Weiping Dong or Hongtao Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, H., Guan, W., Lv, H. et al. CuCr/Cu contact material fabricated via high-speed laser cladding. Int J Adv Manuf Technol 124, 397–410 (2023). https://doi.org/10.1007/s00170-022-10487-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-10487-7

Keywords

Navigation