Skip to main content
Log in

Analyzing laminated electrode(s) performance for the EDM of microchannel(s) in Al(6061)

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Aluminum alloys specifically Al6061 have widespread applications; however, its processing is challenging via conventional means due to chip adhesion and burr formation. Moreover, it is difficult to attain dimensional accuracy of the machined profile in the said alloy especially if the size of the machined profile is in a micron which is a common requirement in case of microchannels’ formation. Microchannels have wide applications in biomedical, chemical, and electronics industry. Therefore, in this study, the potential of EDM is comprehensively investigated for machining of dimensionally consistent microchannel(s) in Al6061. Single, double, and triple microchannel(s) are produced using laminated brass electrode(s) employing Taguchi (L18) design. The dimensional error was measured for each of the produced microchannel(s) using coordinate measuring machine (CMM). It has been revealed that number of channels and electrode thickness is the significant factors contributing 84.9% and 4.7%, respectively, to the depth deviation (Dd). Dd increases with increase in number of channels and electrode thickness. Electrode thickness is the most influential parameter (85.4%) affecting width deviation of microchannel(s). Width deviation experiences, a drop when a thicker electrode is engaged. The thinnest electrode (0.2 mm) has provided the highest value of arc radius which translates to flatter base of channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Verma S, Rao PS (2018) Study on mechanical behavior of aluminum alloy 6061 based composites a review. IOSR J Mech Civ Eng 15:16–20. https://doi.org/10.9790/1684-1504031620 (e-ISSN)

    Article  Google Scholar 

  2. Yoo SC, Kang B, Van Trinh P, Phuong DD, Hong SH (2020) Enhanced mechanical and wear properties of Al6061 alloy nanocomposite reinforced by CNT-template-grown core–shell CNT/SiC nanotubes. Sci Rep 10:12896. https://doi.org/10.1038/s41598-020-69341-z

    Article  Google Scholar 

  3. Duan Z, Ma H, He B, Su L, Zhang X (2019) Pressure drop of microchannel plate fin heat sinks. Micromachines 10:80. https://doi.org/10.3390/mi10020080

    Article  Google Scholar 

  4. Chaides O, Ahuett-Garza H, Castro JM (2016) Determination of process parameters for microchannel fabrication by microelectro-discharge machining. Proc Inst Mech Eng Part B J Eng Manuf 230:1702–1714. https://doi.org/10.1177/0954405414567520

    Article  Google Scholar 

  5. Prakash S, Kumar S (2015) Fabrication of microchannels: a review. Proc Inst Mech Eng Part B J Eng Manuf 229:1273–1288. https://doi.org/10.1177/0954405414535581

    Article  Google Scholar 

  6. Vinoth R, Senthil Kumar D (2018) Experimental investigation on heat transfer characteristics of an oblique finned microchannel heat sink with different channel cross sections. Heat Mass Transf 54:3809–3817. https://doi.org/10.1007/s00231-018-2398-z

    Article  Google Scholar 

  7. Prakash S, Kumar S (2015) Fabrication of microchannels on transparent PMMA using CO2 Laser (10.6 μm) for microfluidic applications: an experimental investigation. Int J Precis Eng Manuf 16:361–366. https://doi.org/10.1007/s12541-015-0047-8

    Article  Google Scholar 

  8. Sahu AK, Jha S (2020) Microchannel fabrication and metallurgical characterization on titanium by nanosecond fiber laser micromilling. Mater Manuf Process 35:279–290. https://doi.org/10.1080/10426914.2020.1718702

    Article  Google Scholar 

  9. Ahmed N, Darwish S, Alahmari AM (2016) Laser ablation and laser-hybrid ablation processes: a review. Mater Manuf Process 31:1121–1142. https://doi.org/10.1080/10426914.2015.1048359

    Article  Google Scholar 

  10. Khan Malek CG (2006) Laser processing for bio-microfluidics applications (part II). Anal Bioanal Chem 385:1362–1369. https://doi.org/10.1007/s00216-006-0517-z

    Article  Google Scholar 

  11. Sahu AK, Malhotra J, Jha S (2022) Laser-based hybrid micromachining processes: a review. Opt Laser Technol 146:107554. https://doi.org/10.1016/j.optlastec.2021.107554

    Article  Google Scholar 

  12. Ishfaq K, Asad M, Anwar S, Pruncu CI, Saleh M, Ahmad S (2020) A comprehensive analysis of the effect of graphene-based dielectric for sustainable electric discharge machining of Ti-6Al-4V. Materials (Basel) 14:23. https://doi.org/10.3390/ma14010023

    Article  Google Scholar 

  13. Kumar SV, Kumar MP (2014) Optimization of cryogenic cooled EDM process parameters using grey relational analysis. J Mech Sci Technol 28:3777–3784. https://doi.org/10.1007/s12206-014-0840-9

    Article  Google Scholar 

  14. Jain S, Parashar V (2021) Critical review on the impact of EDM process on biomedical materials. Mater Manuf Process 36:1701–1724. https://doi.org/10.1080/10426914.2021.1942907

    Article  Google Scholar 

  15. Banu A, Ali MY (2016) Electrical discharge machining (EDM): a review. Int J Eng Mater Manuf 1:3–10. https://doi.org/10.26776/ijemm.01.01.2016.02

  16. Nahak B, Gupta A (2019) A review on optimization of machining performances and recent developments in electro discharge machining. Manuf Rev 6:2. https://doi.org/10.1051/mfreview/2018015

    Article  Google Scholar 

  17. Schubert A, Zeidler H, Kühn R, Hackert-Oschätzchen M (2015) Microelectrical discharge machining: a suitable process for machining ceramics. J Ceram 2015:1–9. https://doi.org/10.1155/2015/470801

    Article  Google Scholar 

  18. Phipon R, Shivakoti I, Sharma A (2020) Sustainable processing of Inconel 718 super alloy in electrical discharge machining process. World J Eng 17:687–695. https://doi.org/10.1108/WJE-03-2020-0077

    Article  Google Scholar 

  19. Gholipoor A, Baseri H, Shabgard MR (2015) Investigation of near dry EDM compared with wet and dry EDM processes. J Mech Sci Technol 29:2213–2218. https://doi.org/10.1007/s12206-015-0441-2

    Article  Google Scholar 

  20. Bilal A, Jahan M, Talamona D, Perveen A (2018) Electro-Discharge machining of ceramics: a review. Micromachines 10:10. https://doi.org/10.3390/mi10010010

    Article  Google Scholar 

  21. Gostimirovic M, Kovac P, Sekulic M, Skoric B (2012) Influence of discharge energy on machining characteristics in EDM. J Mech Sci Technol 26:173–179. https://doi.org/10.1007/s12206-011-0922-x

    Article  Google Scholar 

  22. Singh AK, Mahajan R, Tiwari A, Kumar D, Ghadai RK (2018) Effect of Dielectric on electrical discharge machining: a review. IOP Conf Ser Mater Sci Eng 377:012184. https://doi.org/10.1088/1757-899X/377/1/012184

    Article  Google Scholar 

  23. Shelke RD, Imran SM (2019) A review-electrical discharge machining. 16:34–39. https://doi.org/10.9790/1684-1601023439

  24. Tuckerman DB, Pease RFW (1981) High-performance heat sinking for VLSI. IEEE Electron Device Lett 2:126–129. https://doi.org/10.1109/EDL.1981.25367

    Article  Google Scholar 

  25. Kwon B, Maniscalco NI, Jacobi AM, King WP (2018) High power density air-cooled microchannel heat exchanger. Int J Heat Mass Transf 118:1276–1283. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.068

    Article  Google Scholar 

  26. Yeom T, Simon T, Zhang M, Yu Y, Cui T (2018) Active heat sink with piezoelectric translational agitators, piezoelectric synthetic jets, and micro pin fin arrays. Exp Therm Fluid Sci 99:190–199. https://doi.org/10.1016/j.expthermflusci.2018.07.035

    Article  Google Scholar 

  27. Deng D, Chen X, Chen L, Lian Y, Fu T (2019) Preparation of porous structures on copper microchannel surfaces by laser writing. Sci China Technol Sci 62:2261–2270. https://doi.org/10.1007/s11431-018-9430-9

    Article  Google Scholar 

  28. Hakamada M, Asao Y, Kuromura T, Chen Y, Kusuda H, Mabuchi M (2007) Fabrication of copper microchannels by the spacer method. Scr Mater 56:781–783. https://doi.org/10.1016/j.scriptamat.2007.01.014

    Article  Google Scholar 

  29. Zhao D, Zhang Z, Zhu H, Cao Z, Xu K (2020) An investigation into laser-assisted electrochemical discharge machining of transparent insulating hard-brittle material. Micromachines 12:22. https://doi.org/10.3390/mi12010022

    Article  Google Scholar 

  30. Gudipudi S, Nagamuthu S, Subbian KS, Chilakalapalli SPR (2020) Experimental investigation and mathematical modeling for material removal and tool wear in making of rectangular channels by electric discharge machining (EDM) on aluminum–boron carbide composite sintered preform. Advances in applied mechanical engineering. Springer, Singapore, pp 1011–1019

    Chapter  Google Scholar 

  31. Pozdniakov AV, Lotfy A, Qadir A, Shalaby E, Khomutov MG, Churyumov AY, Zolotorevskiy VS (2017) Development of Al-5Cu/B4C composites with low coefficient of thermal expansion for automotive application. Mater Sci Eng A 688:1–8. https://doi.org/10.1016/j.msea.2017.01.075

    Article  Google Scholar 

  32. Cem Okumus S, Aslan S, Karslioglu R, Gultekin D, Akbulut H (2012) Thermal expansion and thermal conductivity behaviors of Al-Si/SiC/graphite hybrid metal matrix composites (MMCs). Mater Sci 18. https://doi.org/10.5755/j01.ms.18.4.3093

  33. Gudipudi S, Selvaraj N, Chandra D, Kanmani Subbu S, Rao C (2020) A study on geometrical features of electric discharge machined channels on AA6061-4%B 4 C composites. Meas Control 53:358–377. https://doi.org/10.1177/0020294019888241

    Article  Google Scholar 

  34. Wang W, Liu Y, Zhang W, Ma F, Yang D, Zhang S (2019) Research on shape change of multimaterial electrode for EDM. Adv Mater Sci Eng 2019:1–11. https://doi.org/10.1155/2019/9159835

    Article  Google Scholar 

  35. Jiang K, Wu X, Lei J, Hu Z, Gao G, Tang Y, Diao D (2021) Investigation on the geometric evolution of microstructures in EDM with a composite laminated electrode. J Clean Prod 298:126765. https://doi.org/10.1016/j.jclepro.2021.126765

    Article  Google Scholar 

  36. Trych-Wildner A, Wildner K (2017) Multifilament carbon fibre tool electrodes in micro EDM—evaluation of process performance based on influence of input parameters. Int J Adv Manuf Technol 91:3737–3747. https://doi.org/10.1007/s00170-017-0041-7

    Article  Google Scholar 

  37. Chuvaree S, Kanlayasiri K (2018) Improving the performance of EDM deep hole using multi-hole interior flushing electrode. IOP Conf Ser Mater Sci Eng 361:012013. https://doi.org/10.1088/1757-899X/361/1/012013

    Article  Google Scholar 

  38. Yang X, Yang K, Liu Y, Wang L (2016) Study on characteristic of multi-spark EDM method by using capacity coupling. Procedia CIRP 42:40–45. https://doi.org/10.1016/j.procir.2016.02.182

    Article  Google Scholar 

  39. Singh M, Garg H, Maharana S, Yadav A, Singh R, Maharana P, Nguyen T, Yadav S, Loganathan M (2021) An Experimental investigation on the material removal rate and surface roughness of a hybrid aluminum metal matrix composite (Al6061/SiC/Gr). Metals (Basel) 11:1449. https://doi.org/10.3390/met11091449

    Article  Google Scholar 

  40. Rahman M, Wong YS, Nguyen MD (2014) Compound and hybrid micromachining. Comprehensive materials processing. Elsevier, Singapore, pp 113–150

    Chapter  Google Scholar 

  41. Yilmaz Atay H, Uslu G, Kahmaz Y, Atay Ö (2020) Investigations of microstructure and mechanical properties of brass alloys produced by sand casting method at different casting temperatures. IOP Conf Ser Mater Sci Eng 726:012018. https://doi.org/10.1088/1757-899X/726/1/012018

    Article  Google Scholar 

  42. Rashedul IM, Zhang Y, Zhou K, Wang G, Xi T, Ji L (2021) Influence of different tool electrode materials on electrochemical discharge machining performances. Micromachines 12:1077. https://doi.org/10.3390/mi12091077

    Article  Google Scholar 

  43. Bolboacă S, Jäntschi L (2007) Design of experiments: useful orthogonal arrays for number of experiments from 4 to 16. Entropy 9:198–232. https://doi.org/10.3390/e9040198

    Article  MATH  Google Scholar 

  44. Rehman M, Khan SA, Naveed R (2020) Parametric optimization in electric wire discharge machining of DC53 steel using gamma phase coated wire. J Mech Sci Technol 34:1–7. https://doi.org/10.1007/s12206-020-05

  45. Lei J, Wu X, Zhou Z, Xu B, Zhu L, Tang Y (2021) Sustainable mass production of blind multi-microgrooves by EDM with a long-laminated electrode. J Clean Prod 279:123492. https://doi.org/10.1016/j.jclepro.2020.123492

    Article  Google Scholar 

  46. Sabur A, Ali MY, Maleque MA, Moudood MA (2014) Micro-EDM for Micro-channel fabrication on nonconductive ZrO2 ceramic. Int J Automot Mech Eng 10:1841–1851. https://doi.org/10.15282/ijame.10.2014.2.0153

  47. Ali MY, Rahman MA, Zuhaida Zunairi SN, Banu A (2017) Dimensional accuracy of micro-electro discharge milling. IOP Conf Ser Mater Sci Eng 184:012034. https://doi.org/10.1088/1757-899X/184/1/012034

    Article  Google Scholar 

  48. Skoczypiec S, Machno M, Bizoń W (2015) The capabilities of electrodischarge microdrilling of high aspect ratio holes in ceramic materials. Manag Prod Eng Rev 6:61–69. https://doi.org/10.1515/mper-2015-0027

    Article  Google Scholar 

  49. Xin B, Gao M, Li S, Feng B (2020) Modeling of interelectrode gap in electric discharge machining and minimum variance self-tuning control of interelectrode gap. Math Probl Eng 2020:1–20. https://doi.org/10.1155/2020/5652197

    Article  Google Scholar 

  50. Bhaumik M, Maity K (2018) Effect of different tool materials during EDM performance of titanium grade 6 alloy. Eng Sci Technol Int J 21:507–516. https://doi.org/10.1016/j.jestch.2018.04.018

    Article  Google Scholar 

  51. Jesudas T, Arunachalam RM (2011) Study on influence of process parameter in micro - electrical discharge machining (μ-EDM). Eur J Sci Res 59:115–122

    Google Scholar 

Download references

Acknowledgements

Authors are thankful to the support provided by the University of Engineering and Technology, to assist in the completion of this research work.

Data assessment

All the concerned data have already been contained in the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mudassar Rehman.

Ethics declarations

Ethical approval

Authors confirm that they have abided by the publication ethics, state that this work is original, and have not been used for publication anywhere before.

Consent for publication

Authors give consent to journal regarding the publication of this work.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishfaq, K., Naveed, R., Maqsood, M.A. et al. Analyzing laminated electrode(s) performance for the EDM of microchannel(s) in Al(6061). Int J Adv Manuf Technol 123, 2941–2958 (2022). https://doi.org/10.1007/s00170-022-10360-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-10360-7

Keywords

Navigation