Skip to main content
Log in

Burr formation mechanism and machining parameter effect in slot micro-milling titanium alloy Ti6Al4V

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Burr formation is still the major challenge in slot micro-milling of titanium alloy Ti6Al4V due to its difficult-to-machine material properties and hard deburring processing. In the present work, chip and burr formation were investigated by surface morphology observation of slot micro-milling Ti6Al4V, with an emphasis on the top burr and side burr formation mechanism, in which the side burr is defined as the burrs at the bottom edge of the sidewall. Especially, the effect of cutting parameters on burr formation was also analyzed. The results show that the chip shows the segmental in slot micro-milling Ti6Al4V. The up-milling top burr is mainly correlated with the extrusion effect of cutting-edge radius. The extrusion effect of cutting-edge radius, chip turnover induced by micro-milling cutter’s helix angle, and chip separation’s tearing effect all contribute to the down-milling side top burr formation in micro-milling Ti6Al4V. The up-milling side burrs are general adhesive chips and residual tear burrs due to the falling off of adhesive chips from the tool rake face and plowing-shear-plowing chip removal mechanism of the single cutting pass, respectively. The down-milling side burrs are general residual tear burrs and mental debris due to the transformation of the chip removal mechanism for the single cutting pass and tool deflection from up-milling to down-milling in the micro-milling. The down-milling top width and the side burr width have all shown a decreasing trend with the increase of feed per tooth. It is recommended to adopt the large feed per tooth for minimizing top burr width and side burr width. Our findings can provide a guideline for deburring and suppressing the burr formation in slot micro-milling Ti6Al4V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

References

  1. Arrazola PJ, Garay A, Iriarte LM, Armendia M, Marya S, Le Maître F (2009) Machinability of titanium alloys (Ti6Al4V and Ti555.3). J Mater Process Technol 209(5):2223–2230. https://doi.org/10.1016/j.jmatprotec.2008.06.020

    Article  Google Scholar 

  2. Ulutan D, Ozel T (2011) Machining induced surface integrity in titanium and nickel alloys: a review. Int J Mach Tools Manuf 51(3):250–280. https://doi.org/10.1016/j.ijmachtools.2010.11.003

    Article  Google Scholar 

  3. Chen N, Li HN, Wu J, Li Z, Li L, Liu G, He N (2021)Advances in micro milling: from tool fabrication to process outcomes. Int J Mach Tools Manuf 160.https://doi.org/10.1016/j.ijmachtools.2020.103670

  4. O’Toole L, Kang CW, Fang FZ (2021) Precision micro-milling process: state of the art. Adv Manuf 9(2):173–205. https://doi.org/10.1007/s40436-020-00323-0

    Article  Google Scholar 

  5. Aurich JC, Bohley M, Reichenbach IG, Kirsch B (2017) Surface quality in micro milling: Influences of spindle and cutting parameters. CIRP Ann 66(1):101–104. https://doi.org/10.1016/j.cirp.2017.04.029

    Article  Google Scholar 

  6. Lee K, Dornfeld DA (2005) Micro-burr formation and minimization through process control. Precis Eng 29(2):246–252. https://doi.org/10.1016/j.precisioneng.2004.09.002

    Article  Google Scholar 

  7. Kumar AS, Deb S, Paul S (2022) Burr removal from high-aspect-ratio micro-pillars using ultrasonic-assisted abrasive micro-deburring. J Micromech Microeng 32(5). https://doi.org/10.1088/1361-6439/ac6562

  8. Aurich JC, Dornfeld D, Arrazola PJ, Franke V, Leitz L, Min S (2009) Burrs—analysis, control and removal. CIRP Ann 58(2):519–542. https://doi.org/10.1016/j.cirp.2009.09.004

    Article  Google Scholar 

  9. Liang YC, Yang K, Bai QS, Chen JX, Wang B (2009) Modeling and experimental analysis of microburr formation considering tool edge radius and tool-tip breakage in micro end milling. J Vac Sci Technol B: Microelectron Nanometer Struct 27(3). https://doi.org/10.1116/1.3046147

  10. Gillespie LK, Blotter PT (1976) The formation and properties of machining burrs. J Eng Ind 98(1):66–74. https://doi.org/10.1115/1.3438875

    Article  Google Scholar 

  11. Kishimoto W (1981) Study of burr formation in face milling-conditions for the secondary burr formation. Bull Japan Soc Prec Eng 15(1):51

    Google Scholar 

  12. Chern G-L (2006) Experimental observation and analysis of burr formation mechanisms in face milling of aluminum alloys. Int J Mach Tools Manuf 46(12–13):1517–1525. https://doi.org/10.1016/j.ijmachtools.2005.09.006

    Article  Google Scholar 

  13. Hashimura M, Hassamontr J, Dornfeld DA (1999) Effect of in-plane exit angle and rake angles on burr height and thickness in face milling operation. J Manuf Sci Eng 121(1):13–19. https://doi.org/10.1115/1.2830566

    Article  Google Scholar 

  14. Chern G-L, Wu Y-JE, Cheng J-C, Yao J-C (2007) Study on burr formation in micro-machining using micro-tools fabricated by micro-EDM. Precis Eng 31(2):122–129. https://doi.org/10.1016/j.precisioneng.2006.04.001

    Article  Google Scholar 

  15. Wu Y, Chen N, Bian R, He N, Li Z, Li L (2020) Investigations on burr formation mechanisms in micro milling of high-aspect-ratio titanium alloy Ti-6Al-4 V structures. Int J Mech Sci 185. https://doi.org/10.1016/j.ijmecsci.2020.105884

  16. Wu X, Du M, Shen J, Jiang F, Li Y, Liu L (2021) Experimental research on the top burr formation in micro milling. Int J Adv Manuf Technol 117(11–12):3477–3486. https://doi.org/10.1007/s00170-021-07916-4

    Article  Google Scholar 

  17. Silva LC, da Silva MB (2019) Investigation of burr formation and tool wear in micromilling operation of duplex stainless steel. Precis Eng 60:178–188. https://doi.org/10.1016/j.precisioneng.2019.08.006

    Article  Google Scholar 

  18. Wu X, Li L, He N (2017) Investigation on the burr formation mechanism in micro cutting. Precis Eng 47:191–196. https://doi.org/10.1016/j.precisioneng.2016.08.004

    Article  Google Scholar 

  19. Özel T, Thepsonthi T, Ulutan D, Kaftanoğlu B (2011) Experiments and finite element simulations on micro-milling of Ti–6Al–4V alloy with uncoated and cBN coated micro-tools. CIRP Ann 60(1):85–88. https://doi.org/10.1016/j.cirp.2011.03.087

    Article  Google Scholar 

  20. Kiswanto G, Zariatin DL, Ko TJ (2014) The effect of spindle speed, feed-rate and machining time to the surface roughness and burr formation of aluminum alloy 1100 in micro-milling operation. J Manuf Processes 16(4):435–450. https://doi.org/10.1016/j.jmapro.2014.05.003

    Article  Google Scholar 

  21. Khan K, Varghese A, Dixit P, Joshi SS (2019) Effect of tool path complexity on top burrs in micromilling. Procedia Manuf 34:432–439. https://doi.org/10.1016/j.promfg.2019.06.188

    Article  Google Scholar 

  22. Aslantas K, Çiçek A (2018) The effects of cooling/lubrication techniques on cutting performance in micro-milling of Inconel 718 superalloy. Procedia CIRP 77:70–73. https://doi.org/10.1016/j.procir.2018.08.219

    Article  Google Scholar 

  23. Piquard R, D’Acunto A, Laheurte P, Dudzinski D (2014) Micro-end milling of NiTi biomedical alloys, burr formation and phase transformation. Precis Eng 38(2):356–364. https://doi.org/10.1016/j.precisioneng.2013.11.006

    Article  Google Scholar 

  24. Rehman GU, Jaffery SHI, Khan M, Ali L, Khan A, Ikramullah Butt S (2018) Analysis of burr formation in low speed micro-milling of titanium alloy (Ti-6Al-4V). Mech Sci 9(2):231–243. https://doi.org/10.5194/ms-9-231-2018

    Article  Google Scholar 

  25. Jaffery SHI, Khan M, Ali L, Mativenga PT (2015) Statistical analysis of process parameters in micromachining of Ti-6Al-4V alloy. Proc Inst Mech Eng Part B: J Eng Manuf 230(6):1017–1034. https://doi.org/10.1177/0954405414564409

    Article  Google Scholar 

  26. Kumar P, Kumar M, Bajpai V, Singh NK (2017) Recent advances in characterization, modeling and control of burr formation in micro-milling. Manuf Lett 13:1–5. https://doi.org/10.1016/j.mfglet.2017.04.002

    Article  Google Scholar 

  27. Attanasio A, Gelfi M, Pola A, Ceretti E, Giardini C (2013) Influence of material microstructures in micromilling of Ti6Al4V alloy. Materials (Basel) 6(9):4268–4283. https://doi.org/10.3390/ma6094268

    Article  Google Scholar 

  28. Elkaseer AM, Dimov SS, Pham DT, Popov KP, Olejnik L, Rosochowski A (2018) Material microstructure effects in micro-end milling of Cu99. 9E. Proc Inst Mech Eng Part B: J Eng Manuf 232(7):1143–1155

    Article  Google Scholar 

  29. Zhang Y, Bai Q, Bai J, Guo H, Cheng K (2021) Dislocation evolution in nanoscratching the CVD diamond film: discrete dislocation dynamics simulation and experiments. MRS Commun 11(5):619–627. https://doi.org/10.1557/s43579-021-00084-2

    Article  Google Scholar 

  30. Hojati F, Daneshi A, Soltani B, Azarhoushang B, Biermann D (2020) Study on machinability of additively manufactured and conventional titanium alloys in micro-milling process. Precis Eng 62:1–9. https://doi.org/10.1016/j.precisioneng.2019.11.002

    Article  Google Scholar 

  31. Lizzul L, Sorgato M, Bertolini R, Ghiotti A, Bruschi S (2021) Anisotropy effect of additively manufactured Ti6Al4V titanium alloy on surface quality after milling. Precis Eng 67:301–310. https://doi.org/10.1016/j.precisioneng.2020.10.003

    Article  Google Scholar 

  32. Kizhakken V, Mathew J (2018) Modeling of burr thickness in micro-end milling of Ti6Al4V. Proc Inst Mech Eng Part B: J Eng Manuf 233(4):1087–1102. https://doi.org/10.1177/0954405418769916

    Article  Google Scholar 

  33. Sharma S, Meena A (2020) Microstructure attributes and tool wear mechanisms during high-speed machining of Ti-6Al-4V. J Manuf Processes 50:345–365. https://doi.org/10.1016/j.jmapro.2019.12.029

    Article  Google Scholar 

  34. Simoneau A, Ng E, Elbestawi MA (2006) Chip formation during microscale cutting of a medium carbon steel. Int J Mach Tools Manuf 46(5):467–481. https://doi.org/10.1016/j.ijmachtools.2005.07.019

    Article  Google Scholar 

  35. Mian AJ, Driver N, Mativenga PT (2011) Chip formation in microscale milling and correlation with acoustic emission signal. Int J Adv Manuf Technol 56(1–4):63–78. https://doi.org/10.1007/s00170-011-3185-x

    Article  Google Scholar 

  36. Kou Z, Wan Y, Cai Y, Liang X, Liu Z (2015) Burr controlling in micro milling with supporting material method. Procedia Manuf 1:501–511. https://doi.org/10.1016/j.promfg.2015.09.015

    Article  Google Scholar 

  37. Mamedov A, Lazoglu I (2016) Thermal analysis of micro milling titanium alloy Ti–6Al–4V. J Mater Process Technol 229:659–667. https://doi.org/10.1016/j.jmatprotec.2015.10.019

    Article  Google Scholar 

  38. Rao S, Shunmugam MS (2012) Analytical modeling of micro end-milling forces with edge radius and material strengthening effects. Mach Sci Technol 16(2):205–227. https://doi.org/10.1080/10910344.2012.673966

    Article  Google Scholar 

  39. Aslantas K, Alatrushi LKH, Bedir F, Kaynak Y, Yılmaz N (2020) An experimental analysis of minimum chip thickness in micro-milling of two different titanium alloys. Proc Inst Mech Eng Part B: J Eng Manuf 234(12):1486–1498. https://doi.org/10.1177/0954405420933098

    Article  Google Scholar 

  40. Zhang Y, Bai Q, Zhang F, Wang P (2022) Calculation and analysis of quasi-dynamic cutting force and specific cutting energy in micro-milling Ti6Al4V. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-022-09086-3

    Article  Google Scholar 

  41. Kim C-J, Mayor JR, Ni J (2004) A static model of chip formation in microscale milling. J Manuf Sci Eng 126(4):710–718. https://doi.org/10.1115/1.1813475

    Article  Google Scholar 

  42. Kumar M, Bajpai V (2019) Experimental investigation of top burr formation in high-speed micro-milling of Ti6Al4V alloy. Proc Inst Mech Eng Part B: J Eng Manuf 234(4):730–738. https://doi.org/10.1177/0954405419883049

    Article  Google Scholar 

Download references

Funding

This research work was supported by the National Natural Science Foundation of China (Grant No. 52075129). The authors also received financial support from the China Scholarship Council (202006120178).

Author information

Authors and Affiliations

Authors

Contributions

Yabo Zhang: conceptualization, methodology, writing—original draft; Qingshun Bai: funding acquisition, supervision, formal analysis, writing—review and editing; Sun Yangyang: writing—review and editing; Li Donghai: writing—review and editing;

Corresponding author

Correspondence to Bai Qingshun.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

The manuscript has been read and approved by all the authors.

Consent to publication

All the authors listed in the manuscript have approved the manuscript will be considered for publication in The International Journal of Advanced Manufacturing Technology.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yabo, Z., Qingshun, B., Yangyang, S. et al. Burr formation mechanism and machining parameter effect in slot micro-milling titanium alloy Ti6Al4V. Int J Adv Manuf Technol 123, 2073–2086 (2022). https://doi.org/10.1007/s00170-022-10298-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-10298-w

Keywords

Navigation