Skip to main content
Log in

Powder bed surface relief formation and denudation in selective laser melting

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Recent studies have revealed the importance of powder transport by gas-phase flows in the laser-interaction zone in laser powder bed additive manufacturing. The understanding of such a mass transfer mechanism is necessary for developing and optimizing laser-assisted processes of additive manufacturing. Powder bed surface relief around the remelted track is experimentally characterized by metallography and laser scanning profilometry in single-track experiments with powders of various materials and various particle sizes. Denudation zones with sharp irregular boundaries containing particle agglomerates are observed for finer powders with smaller particles. Denudation zones without well-defined boundaries containing single particles are observed for coarser powders. The balance of forces applied to a particle is theoretically analyzed to understand powder rearrangement in the laser-interaction zone. The drag force is estimated by a similarity point-source model of the entrainment flow with a correction for the finite size of the evaporation spot. The adhesion force appears to be greater than the gravity one for the fine powders and lower than the gravity for the coarse powders, thus explaining the observed difference in the denudation zone morphology. The measured variation of the denudation width with the material properties and the particle size is consistent with the theoretical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Gusarov AV, Grigoriev SN, Volosova MA, Melnik YA, Laskin A, Kotoban DV, Okunkova AA (2018) On productivity of laser additive manufacturing. J Mater Process Technol 261:213–232. https://doi.org/10.1016/j.jmatprotec.2018.05.033

    Article  Google Scholar 

  2. Bouabbou A, Vaudreuil S (2022) Understanding laser-metal interaction in selective laser melting additive manufacturing through numerical modelling and simulation: a review. Virtual Phys Prototyp 17:1–20. https://doi.org/10.1080/17452759.2022.2052488

    Article  Google Scholar 

  3. Yadroitsev I, Bertrand P, Smurov I (2006) Parametric analysis of selective laser melting technology, ICALEO 2006 Congress Proc 1825. https://doi.org/10.2351/1.5060792

  4. Yadroitsev I, Bertrand Ph, Smurov I (2007) Parametric analysis of the selective laser melting process. Appl Surf Sci 253:8064–8069. https://doi.org/10.1016/j.apsusc.2007.02.088

    Article  Google Scholar 

  5. Mumtaz KA, Hopkinson N (2010) Selective Laser Melting of thin wall parts using pulse shaping. J Mater Process Technol 210:279–287. https://doi.org/10.1016/j.jmatprotec.2009.09.011

    Article  Google Scholar 

  6. Liu Y, Yang Y, Mai S, Wang D, Song C (2015) Investigation into spatter behavior during selective laser melting of AISI 316L stainless steel powder. Mater Des 87:797–806. https://doi.org/10.1016/j.matdes.2015.08.086

    Article  Google Scholar 

  7. Gunenthiram V, Peyre P, Schneider M, Dal M, Coste F, Koutiri I, Fabbro R (2018) Experimental analysis of spatter generation and melt-pool behavior during the powder bed laser beam melting process. J Mater Process Technol 251:376–386. https://doi.org/10.1016/j.jmatprotec.2017.08.012

    Article  Google Scholar 

  8. Matthews MJ, Guss G, Khairallah SA, Rubenchik A, Anderson AT, Depond PJ, King WE (2016) Denudation of metal powder layers in laser powder bed fusion processes. Acta Mater 114:33–42. https://doi.org/10.1016/j.actamat.2016.05.017

    Article  Google Scholar 

  9. Ly S, Rubenchik AM, Khairallah SA, Guss G, Matthews MJ (2017) Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing. Sci Rep 7:4085. https://doi.org/10.1038/s41598-017-04237-z

    Article  Google Scholar 

  10. Bidare P, Bitharas I, Ward RM, Attallah MM, Moore AJ (2018) Fluid and particle dynamics in laser powder bed fusion. Acta Mater 142:107–120. https://doi.org/10.1016/j.actamat.2017.09.051

    Article  Google Scholar 

  11. Zhirnov I, Kotoban DV, Gusarov AV (2018) Evaporation-induced gas-phase flows at selective laser melting. Appl Phys A 124:157. https://doi.org/10.1007/s00339-017-1532-y

    Article  Google Scholar 

  12. Volpp J (2019) Powder particle movement during powder bed fusion. Procedia Manuf 36:26–32. https://doi.org/10.1016/j.promfg.2019.08.005

    Article  Google Scholar 

  13. Zhao C, Fezzaa K, Cunningham RW, Wen H, De Carlo F, Chen L, Rollett AD, Sun T (2017) Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction. Sci Rep 7:3602. https://doi.org/10.1038/s41598-017-03761-2

    Article  Google Scholar 

  14. Guo Q, Zhao C, Escano LI, Young Z, Xiong L, Fezzaa K, Everhart W, Brown B, Sun T, Chen L (2018) Transient dynamics of powder spattering in laser powder bed fusion additive manufacturing process revealed by in-situ high-speed high energy x-ray imaging. Acta Mater 151:169–180. https://doi.org/10.1016/j.actamat.2018.03.036

    Article  Google Scholar 

  15. Gusarov AV (2020) Entrainment flow of a jet emerging into a half-space with the no-slip boundary condition. Phys Fluids 32:083107. https://doi.org/10.1063/5.0015040

    Article  Google Scholar 

  16. Bidare P, Bitharas I, Ward RM, Attallah MM, Moore AJ (2018) Laser powder bed fusion at sub-atmospheric pressures. Int J Mach Tools Manuf 130–131:65–72. https://doi.org/10.1016/j.ijmachtools.2018.03.007

    Article  Google Scholar 

  17. Bidare P, Bitharas I, Ward RM, Attallah MM, Moore AJ (2018) Laser powder bed fusion in high-pressure atmospheres. Int J Adv Manuf Technol 99:543–555. https://doi.org/10.1007/s00170-018-2495-7

    Article  Google Scholar 

  18. Zauner E (1985) Visualization of the viscous flow induced by a round jet. J Fluid Mech 154:111–119. https://doi.org/10.1017/S0022112085001446

    Article  Google Scholar 

  19. Schneider W (1981) Flow induced by jets and plumes. J Fluid Mech 108:55–65. https://doi.org/10.1017/S0022112081001985

    Article  MATH  Google Scholar 

  20. Schneider W (1985) Decay of momentum flux in submerged jets. J Fluid Mech 154:91–110. https://doi.org/10.1017/S0022112085001434

    Article  Google Scholar 

  21. Anisimov SI (1968) Vaporization of metal absorbing laser radiation. Sov Phys JETP 27:182–183

    Google Scholar 

  22. Gusarov AV, Smurov I (2002) Gas-dynamic boundary conditions of evaporation and condensation: numerical analysis of the Knudsen layer. Phys Fluids 14:4242. https://doi.org/10.1063/1.1516211

    Article  MathSciNet  MATH  Google Scholar 

  23. Lemanov VV, Terekhov VI, Sharov KA, Shumeiko AA (2013) An experimental study of submerged jets at low Reynolds numbers. Tech Phys Lett 39:421–423. https://doi.org/10.1134/S1063785013050064

    Article  Google Scholar 

  24. Masmoudi A, Bolot R, Coddet C (2015) Investigation of the laser-powder-atmosphere interaction zone during the selective laser melting process. J Mater Process Technol 225:122–132. https://doi.org/10.1016/j.jmatprotec.2015.05.008

    Article  Google Scholar 

  25. Mayi YA, Dal M, Peyre P, Bellet M, Metton C, Moriconi C, Fabbro R (2020) Laser-induced plume investigated by finite element modelling and scaling of particle entrainment in laser powder bed fusion. J Phys D 53:075306. https://doi.org/10.1088/1361-6463/ab5900

    Article  Google Scholar 

  26. Chen H, Yan W (2020) Spattering and denudation in laser powder bed fusion process: multiphase flow modelling. Acta Mater 196:154–167. https://doi.org/10.1016/j.actamat.2020.06.033

    Article  Google Scholar 

  27. Li X, Zhao C, Sun T, Tan W (2020) Revealing transient powder-gas interaction in laser powder bed fusion process through multi-physics modeling and high-speed synchrotron x-ray imaging. Addit Manuf 35:101362. https://doi.org/10.1016/j.addma.2020.101362

    Article  Google Scholar 

  28. Amiri M, Payton EJ (2021) An analytical model for prediction of denudation zone width in laser powder bed fusion additive manufacturing. Addit Manuf 48:102461. https://doi.org/10.1016/j.addma.2021.102461

    Article  Google Scholar 

  29. EL-Amin MF, Sun S, Heidemann W, Muller-Steinhagen H (2010) Analysis of turbulent buoyant confined jet modeled using realizable kε model. Heat Mass Transf 46:943–960. https://doi.org/10.1007/s00231-010-0625-3

    Article  Google Scholar 

  30. Gusarov AV (2020) Analytic similarity solutions of the Navier-Stokes equations for a jet in a half space with the no-slip boundary condition. Phys Fluids 32:053104. https://doi.org/10.1063/5.0008111

    Article  Google Scholar 

  31. Kaserer L, Bergmueller S, Braun J, Leichtfried G (2020) Vacuum laser powder bed fusion - track consolidation, powder denudation, and future potential. Int J Adv Manuf Technol 110:3339–3346. https://doi.org/10.1007/s00170-020-06071-6

    Article  Google Scholar 

  32. Traore S, Schneider M, Koutiri I, Coste F, Fabbro R, Charpentier C, Lefebvre P, Peyre P (2021) Influence of gas atmosphere (Ar or He) on the laser powder bed fusion of a Ni-based alloy. J Mater Process Technol 288:116851. https://doi.org/10.1016/j.jmatprotec.2020.116851

    Article  Google Scholar 

  33. Ferziger JH, Kaper HG (1972) Mathematical theory of transport processes in gases, North-Holland

  34. Achee T, Guss G, Elwany A, Matthews M (2021) Laser pre-sintering for denudation reduction in the laser powder bed fusion additive manufacturing of Ti-6Al-4V alloy. Addit Manuf 42:101985. https://doi.org/10.1016/j.addma.2021.101985

    Article  Google Scholar 

  35. Zhao Y, Aoyagi K, Yamanaka K, Chiba A (2020) Role of operating and environmental conditions in determining molten pool dynamics during electron beam melting and selective laser melting. Addit Manuf 36:101559. https://doi.org/10.1016/j.addma.2020.101559

    Article  Google Scholar 

  36. Khmyrov RS, Protasov CE, Grigoriev SN, Gusarov AV (2016) Crack-free selective laser melting of silica glass: single beads and monolayers on the substrate of the same material. Int J Adv Manuf Technol 85:1461–1469. https://doi.org/10.1007/s00170-015-8051-9

    Article  Google Scholar 

  37. Khmyrov RS, Ableeva RR, Gusarov AV (2020) Metallographic study of denudation in laser powder-bed fusion. Procedia CIRP 94:194–199. https://doi.org/10.1016/j.procir.2020.09.037

    Article  Google Scholar 

  38. Oerlikon Metco (2022) https://www.oerlikon.com

  39. Grigoriev IS, Meilikhov EZ (1997) Handbook of physical quantities. CRC Press, New York

    Google Scholar 

  40. LMI Technologies (2022) https://lmi3d.com/series/mikrocad-series/

  41. Leite FL, Bueno CC, Da Róz AL, Ervino Ziemath EC, Oliveira ON Jr (2012) Theoretical models for surface forces and adhesion and their measurement using atomic force microscopy. Int J Mol Sci 13:12773–856. https://doi.org/10.3390/ijms131012773

    Article  Google Scholar 

  42. Hibbeler RC (2016) Engineering mechanics: statics and dynamics. Pearson, New York

    MATH  Google Scholar 

  43. Yadroitsev I, Gusarov A, Yadroitsava I, Smurov I (2010) Single track formation in selective laser melting of metal powders. J Mater Process Technol 210:1624–1631. https://doi.org/10.1016/j.jmatprotec.2010.05.010

    Article  Google Scholar 

  44. Ciurana J, Hernandez L, Delgado J (2013) Energy density analysis on single tracks formed by selective laser melting with CoCrMo powder material. Int J Adv Manuf Technol 68:1103–1110. https://doi.org/10.1007/s00170-013-4902-4

    Article  Google Scholar 

  45. Bergström L (1997) Hamaker constants of inorganic materials. Adv Colloid Interface Sci 70:125–169. https://doi.org/10.1016/S0001-8686(97)00003-1

    Article  Google Scholar 

  46. Eichenlaub S, Chan C, Beaudoin SP (2002) Hamaker constants in integrated circuit metalization. J Colloid Interface Sci 248:389–397. https://doi.org/10.1006/jcis.2002.8241

    Article  Google Scholar 

  47. Tolias P (2018) Lifshitz calculations of Hamaker constants for fusion relevant materials. Fusion Eng Des 133:110–116. https://doi.org/10.1016/j.fusengdes.2018.06.002

    Article  Google Scholar 

  48. Meier C, Weissbach R, Weinberg J, Wall WA, Hart AJ (2019) Critical influences of particle size and adhesion on the powder layer uniformity in metal additive manufacturing. J Mater Process Technol 266:484–501. https://doi.org/10.1016/j.jmatprotec.2018.10.037

    Article  Google Scholar 

  49. Andersson KM, Bergström L (2002) DLVO interactions of tungsten oxide and cobalt oxide surfaces measured with the colloidal probe technique. J Colloid Interface Sci 246:309–315. https://doi.org/10.1006/jcis.2001.8021

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (grant agreement no. 21–79-30058). The experiments were carried out using the equipment of the Centre of collective use of MSUT “STANKIN” supported by the Ministry of Science and Higher Education of the Russian Federation (contract no. 075–15-2021–695).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization SG, AG. Investigation AK, RK, TT. Supervision AG. Data curation RA, AK. Funding acquisition SG. Writing–original draft RK, AG. Writing–review and editing SG, AK, TT.

Corresponding author

Correspondence to Andrey Gusarov.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent to publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigoriev, S., Ableyeva, R., Korotkov, A. et al. Powder bed surface relief formation and denudation in selective laser melting. Int J Adv Manuf Technol 123, 543–558 (2022). https://doi.org/10.1007/s00170-022-10197-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-10197-0

Keywords

Navigation