Skip to main content
Log in

An investigation into the impact of grinding residual stress on the meshing stress of spiral bevel gear

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Grinding residual stress (GRS) has been understood to have a great impact on the strength of gear fatigue life. However, there are lack of detailed studies on the influences in terms of mechanism and magnitude. To fill this gap, this study proposed a new method based on finite element analysis (FEA) to calculate the overall meshing stress on a gear tooth surface by including both the GRS and elastohydrodynamic lubrication (EHL) film pressure. Applying this method to a spiral bevel gear has resulted in a number of interesting results that GRS produced to reveal its mechanism of action through a full meshing cycle. The acquired understanding would be useful for development of manufacturing processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

Abbreviations

\({\Sigma }_{\mathrm{gr}}\left\{{\mathrm{O}}_{\mathrm{gr}};\;{x}_{\mathrm{gr}},{y}_{\mathrm{gr}},{z}_{\mathrm{gr}}\right\}\) :

Cartesian coordinate system rigidly connected to the ground workpiece

\({v}_{\mathrm{gr}}\) :

Grinding velocity (m/s)

\(C\) :

Cutting depth (mm)

\({\Sigma }_{\mathrm{g}}\left\{{\mathrm{O}}_{\mathrm{g}};\;{x}_{\mathrm{g}},{y}_{\mathrm{g}},{z}_{\mathrm{g}}\right\}\) :

Cartesian coordinate system attached to the gear blank

\({\Phi }_{\mathrm{gr}}\) :

Grinding residual stress tensor expressed in \({\Sigma }_{\mathrm{gr}}\)

\({\Phi }_{\mathrm{g}}\) :

Grinding residual stress tensor expressed in \({\Sigma }_{\mathrm{g}}\)

\(\Sigma \left\{\mathrm{O}\;;x,y,z\right\}\) :

Fixed coordinate system rigidly connected to the machine centre

\({\Sigma }_{\mathrm{c}}\left\{{\mathrm{O}}_{\mathrm{c}};\;{x}_{\mathrm{c}},{y}_{\mathrm{c}},{z}_{\mathrm{c}}\right\}\) :

Cartesian coordinate system attached to the grinding wheel

\(\dot{{q}_{2}}\) :

Angular velocity of the revolution of grinding wheel (rad/min)

\({\omega }_{\mathrm{g}}\) :

Angular velocity of the gear blank (°)

\({M}_{\mathrm{c}}\) :

Arbitrary point on the grinding wheel cone

\(M\) :

The corresponding point in contact with \({M}_{\mathrm{c}}\) on gear

\({r}_{{\mathrm{OM}}_{\mathrm{c}}}\) :

Position vector of \({M}_{\mathrm{c}}\)

\({M}_{0\mathrm{c}}\) :

Tip apex

\({s}_{2}\) :

Length of \({{M}_{\mathrm{c}}M}_{0\mathrm{c}}\) (mm)

\({n}_{2}\) :

Unit normal on the grinding wheel cone at point \({M}_{\mathrm{c}}\)

\({t}_{2}\) :

Unit tangent on the grinding wheel cone at point \({M}_{\mathrm{c}}\)

\({q}_{2}\) :

Centre roll position (°)

\({\theta }_{2}\) :

Phase angle of both \({M}_{c}\) and \({M}_{0\mathrm{c}}\) (°)

\({v}_{{\mathrm{M}}_{\mathrm{c}}}\left(\Sigma \right)\) :

Velocity of point \({M}_{\mathrm{c}}\) in \(\Sigma\)

\({v}_{\mathrm{M}}(\Sigma )\) :

Velocity of point \(M\) in \(\Sigma\)

\({v}_{{\mathrm{M}}_{\mathrm{c}}\mathrm{M}}\) :

Relative velocity vector of point \({M}_{\mathrm{c}}\) and \(M\)

\({S}_{2}\) :

Radial distance (mm)

\({r}^{\mathrm{g}}\) and \({r}^{\mathrm{p}}\) :

The position vector of the meshing point on the gear and the pinion

\({v}^{\mathrm{g}}\) and \({v}^{\mathrm{p}}\) :

The velocity vector of the meshing point on the gear and the pinion

\({\omega }^{\mathrm{g}}\) and \({\omega }^{\mathrm{p}}\) :

The rotation speed vector of the gear and the pinion (r/min)

\({u}_{\mathrm{e}}\) :

The entrainment velocity vector

\({u}_{\mathrm{et}}\) :

The projection of \({u}_{\mathrm{e}}\) on the tangent plane (m/s)

\(b\) :

The short axis of contact ellipse

\(\theta\) :

The angle between \({u}_{\mathrm{et}}\) and \(b\) (rad)

\({\Sigma }_{\mathrm{L}}\left\{{O}_{\mathrm{L}};\;{x}_{\mathrm{L}},{y}_{\mathrm{L}}\right\}\) :

The 2D coordinate system established for EHL calculation area

\({\Sigma }_{\mathrm{g}2\mathrm{d}}\left\{{O}_{\mathrm{g}2\mathrm{d}};\;{x}_{\mathrm{g}2\mathrm{d}},{y}_{\mathrm{g}2\mathrm{d}}\right\}\) :

The 2D coordinate system in the gear shaft section \({x}_{\mathrm{g}}{\mathrm{O}}_{\mathrm{g}}{y}_{\mathrm{g}}\)

\({P}_{\mathrm{L}}\) :

An arbitrary point in EHL calculation area

\({\alpha }_{\mathrm{r}}\) :

Rotating angle (°)

\({F}_{c}\) :

Point contact force (N)

\({\mathrm{r}}_{\mathrm{min}}\) :

Minimum principal curvature radius (m)

\({r}_{\mathrm{max}}\) :

Maximum principal curvature radius (m)

\({P}_{\mathrm{max}}\) :

Maximum EHL film pressure (GPa)

\({H}_{\mathrm{min}}\) :

Minimum EHL film thickness (\(\mathrm{\mu m}\))

\({\sigma }_{\mathrm{gr}}\) :

Grinding residual stress (MPa)

References

  1. Fang ZD, Deng XZ, Ren DF (2002) Loaded tooth contact analysis of spiral bevel gears considering edge contact. J Mech Eng 38(9):69–72. https://doi.org/10.3321/j.issn:0577-6686.2002.09.015

  2. Litvin FL, Fuentes A, Hayasaka K (2006) Design, manufacture, stress analysis, and experimental tests of low-noise high endurance spiral bevel gears. Mech Machine Theory 41(1):83–118. https://doi.org/10.1016/j.mechmachtheory.2005.03.001

  3. Litvin FL, Fuentes A, Fan Q, Handschuh RF (2002) Computerized design, simulation of meshing, and contact and stress analysis of face-milled formate generated spiral bevel gears. Mech Mach Theory 37(5):441–459. https://doi.org/10.1016/s0094-114x(01)00086-6

    Article  MATH  Google Scholar 

  4. Litvin FL, Sheveleva GI, Vecchiato D, Gonzalez-Perez I, Fuentes A (2005) Modified approach for tooth contact analysis of gear drives and automatic determination of guess values. Computer Methods Appl Mech Eng 194(27–29):2927–2946. https://doi.org/10.1016/j.cma.2004.07.031

  5. Simon V (2007) Computer simulation of tooth contact analysis of mismatched spiral bevel gears. Mech Machine Theory 42(3):365–381. https://doi.org/10.1016/j.mechmachtheory.2006.02.010

  6. Simon V (2007) Load Distribution in Spiral Bevel Gears. J Mech Des 129(2):201–209. https://doi.org/10.1115/1.2406090

    Article  Google Scholar 

  7. Simon V (2011) Influence of tooth modifications on tooth contact in face-hobbed spiral bevel gears. Mech Mach Theory 46(12):1980–1998. https://doi.org/10.1016/j.mechmachtheory.2011.05.002

    Article  Google Scholar 

  8. Wang YZ (1999) Numerical analysis of thermal elastohydrodynamic lubrication of high-speed spiral bevel gear. Northeastern University, Shenyang

    Google Scholar 

  9. Wang YZ, Zhang W, Liu Y (2018) Analysis model for surface residual stress distribution of spiral bevel gear by generating grinding. Mech Mach Theory 130:477–490. https://doi.org/10.1016/j.mechmachtheory.2018.08.027

    Article  Google Scholar 

  10. Zhou J, Ming XZ (2015) Research of the residual stress generation and influence factor of grinding tooth surface of spiral bevel gear. J Mech Trans 39:20–25. https://doi.org/10.16578/j.issn.1004.2539.2015.03.003

  11. Zhang XA (2010) Digital modeling and analysis of thermo-mechanical coupling on NC grinding interface of spiral bevel gear. Hunan University of Technology, Changsha

    Google Scholar 

  12. Ming XZ (2010) Research on mechanism of thermo-mechanical coupling on grinding interface and surface performance generating of spiral bevel gears. Central South University, Changsha

    Google Scholar 

  13. Rasim M, Mattfeld P, Klocke F (2015) Analysis of the grain shape influence on the chip formation in grinding. Journal of Materials Process Technology 226:60–68. https://doi.org/10.1016/j.jmatprotec.2015.06.041

    Article  Google Scholar 

  14. Xiao YL, Wang SL, Chi M, Wang SB, Yi LL, Xia CJ, Dong JP (2021) Measurement and modeling methods of grinding-induced residual stress distribution of gear tooth flank. The International Journal of Advanced Manufacturing Technology 115:3933–3944. https://doi.org/10.1007/s00170-021-07392-w

    Article  Google Scholar 

  15. He HF, Liu HJ, Zhu CC, Tang JY (2019) Study on the gear fatigue behavior considering the effect of residual stress based on the continuum damage approach. Eng Fail Anal 104:531–544. https://doi.org/10.1016/j.engfailanal.2019.06.027

    Article  Google Scholar 

  16. Chen X, Wang D, Liu YF (2017) Effect of grinding 18CrNiMo7–6 gear steel in high speed grinding on residual stress. Machinery Design Manuf 09:80–82. https://doi.org/10.19356/j.cnki.1001-3997.2017.09.021

  17. Wang YZ, Chen YY, Zhou GM, Lv QJ, Zhang ZZ, Tang W, Liu Y (2016) Roughness model for tooth surfaces of spiral bevel gears under grinding. Mech Mach Theory 104:17–30. https://doi.org/10.1016/j.mechmachtheory.2016.05.016

    Article  Google Scholar 

  18. Wang YZ, Liu Y, Wang D, Zhang W, ZhaoXF (2018) Research on gear gridding process of materical 18CrNi4A based on burn control. J Beijing Inst Technol 38(03):235–240. https://doi.org/10.15918/j.tbit1001-0645.2018.03.003

  19. Cao W, Pu W, Wang JX, Xiao K (2018) Effect of contact path on the mixed lubrication performance, friction and contact fatigue in spiral bevel gears. Tribol Int 123:359–371. https://doi.org/10.1016/j.triboint.2018.03.015

    Article  Google Scholar 

  20. Paouris L, Theodossiades S, Cruz MDL, Rahnejat H, Barton WM (2015) Lubrication analysis and sub-surface stress field of an automotive differential hypoid gear pair under dynamic loading. ARCHIVE Proc Inst Mech Eng Part C J Mech Eng Sci 1989–1996 230(7):203–210. https://doi.org/10.1177/0954406215608893

  21. Mohammadpour M, Theodossiades S, Rahnejat H (2012) Elastohydrodynamic lubrication of hypoid gear pairs at high loads. ARCHIVE Proceedings of the Institution of Mechanical Engineers Part J J Eng Tribol 1994–1996 226(3): 183–198. https://doi.org/10.1177/1350650111431027

  22. Gonzalez-Perez I, Iserte JL, Fuentes A (2011) Implementation of Hertz theory and validation of a finite element model for stress analysis of gear drives with localized bearing contact. Mech Mach Theory 46(6):765–783. https://doi.org/10.1016/j.mechmachtheory.2011.01.014

    Article  MATH  Google Scholar 

  23. Handschuh RF, Kicher TP (1996) A method for thermal analysis of spiral bevel gears. J Mech Des 118(4):580–585. https://doi.org/10.1115/1.2826932

    Article  Google Scholar 

  24. Litvin FL, Chen JS, Lu J, Handschuh RF (1996) Handschuh, Application of finite element analysis for determination of load share, real contact ratio, precision of motion, and stress analysis. J Mech Des 118(4):561–567. https://doi.org/10.1115/1.2826929

    Article  Google Scholar 

  25. Lv CF, Wu XY (2014) Modeling of residual stress in cylindrical grinding base on back propagation neural networking Volterra nonlinear system. Machine Tool & Hydraulics 42(23):150–155. https://doi.org/10.3969/j.issn1001-3881.2014.23.037

    Article  Google Scholar 

  26. Ulutan D, Alaca BE, Lazoglu I (2007) Analytical modelling of residual stresses in machining. Journal of Materials Processing Tech 183(1):77–87. https://doi.org/10.1016/j.jmatprotec.2006.09.032

    Article  Google Scholar 

  27. Chen X, Rowe WB, Mccormack DF (2000) Analysis of the transitional temperature for tensile residual stress in grinding. J Mater Process Technol 107:216–221. https://doi.org/10.1016/S0924-0136(00)00692-0

    Article  Google Scholar 

  28. Wu JP, Ming XZ (2012) Exploring NC grinding residual stress of spiral bevel gear using multi-physical fields. Mechanical Science and Technology for Aerospace Engineering 31(4): 633–638. https://doi.org/10.1007/s11783-011-0280-z.

  29. Zhang XM, Liu LJ, Xiu SC, Bai B (2014) Simulation analysis of ground surface residual stress with thermal-mechanical coupling principle. J Northeastern University (Natural Science) 35(12):1758–1762. https://doi.org/10.3969/j.issn.1005-3026.2014.12.020

  30. Liu LJ (2012) Control of grinding surface residual stressand experimental research of parts’ surface integrity. Northeastern University, Shenyang

    Google Scholar 

  31. Su C (2009) Research on key theories and technologies of virtual grinding. Northeastern University, Shenyang

    Google Scholar 

  32. Su C, Tang L, Hou JM, Wang WS (2009) Simulation research of metal cutting based on FEM and SPH. J Sys Simulation 21(16):5002–5005. https://doi.org/10.16182/j.cnki.joss.2009.16.005

  33. Su C, Xu L, Li MG, Ma JJ (2012) Study on modeling and cutting simulation of abrasive grains. Acta Aeronaut. Acta Aeronautica et Astronautica Sinica 33(11):2130–2135

  34. Qu SY, Guo F, Yang PR (1999)Numerical Analysis in the elastodrodynamic lubrication of elliptical contacts with an arbitrary entrainment. Lubrication Eng (04):2–4+70

  35. Simon V (2000) FEM stress analysis in hypoid gears. Mech Mach Theory 35(9):1197–1220. https://doi.org/10.1016/S0094-114X(99)00071-3

    Article  Google Scholar 

  36. Pu W, Wang JX, Zhu D, Yang RS, Li JY, Liu WH (2014) Semi-system approach in elastohydrodynamic lubrication of elliptical contacts with arbitrary entrainment. Journal of Mechanical Engineering 50(13):106–112. https://doi.org/10.3901/JME.2014.13.106

    Article  Google Scholar 

  37. Zhu D, Wang JX, Pu W, Zhang Y (2014) A theoretical analysis of the mixed elastohydrodynamic lubrication in elliptical contacts with an arbitrary entrainment angle. J Tribol 136:1–11. https://doi.org/10.1115/1.4028126

    Article  Google Scholar 

  38. Wang YZ, Chen YY, Han X, Wu LF, Zeng H (2011) Research of simulation technology in low-stress machining on tooth surface of spiral bevel gears used in aviation industry. Appl Mech Mater 86–86:688–691. https://doi.org/10.4028/www.scientific.net/AMM.86.688

    Article  Google Scholar 

  39. Rego R, Penhaus CL, Gomes J, Klocke F (2018) Residual stress interaction on gear manufacturing. J Mater Process Technol 252:249–258. https://doi.org/10.1016/j.jmatprotec.2017.09.017

    Article  Google Scholar 

  40. Mises RV (1913) Mechanik der festen körper im plastisch deformablen Zustand. Mathematisch-Physikalische Klasse 1:582–592

    MATH  Google Scholar 

Download references

Funding

This research was supported by the National Science and Technology Support Program of China (grant number MKF20210012).

Author information

Authors and Affiliations

Authors

Contributions

Yanzhong Wang: methodology, funding acquisition and supervision; Wei Zhang: investigation, method, simulation, data analysis and writing; Yanyan Chen: simulation; Bo Yu: data analysis; Fengshou Gu: review; Jihong Liu: picture making.

Corresponding author

Correspondence to Wei Zhang.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, W., Chen, Y. et al. An investigation into the impact of grinding residual stress on the meshing stress of spiral bevel gear. Int J Adv Manuf Technol 122, 3817–3835 (2022). https://doi.org/10.1007/s00170-022-10095-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-10095-5

Keywords

Navigation