Skip to main content
Log in

Performance and increased fatigue life for a Ti workpiece produced by the EDM process

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The effect of the discharge current (ranging from 5 to 13 A) in electrical discharge machining (EDM) on the machining characteristics of pure Ti is investigated. With an increased discharge current, the electrode wear rates (ranging from 0.15 to 0.73 mg/min), material removal rates (ranging from 1.37 to 5.30 mg/min), surface roughness (ranging from Ra = 3.47 to Ra = 5.91 μm), and recast layer thickness (ranging from 19.12 to 48.52 μm) also increased. However, the EDMed surface micro-hardness decreased from 269 Hv (discharge current 5 A) to 216 Hv (discharge current 13 A), which is due to the electrical discharge coating effect. Control charts are used to ensure the EDM process is well regulated and stable. The EDMed surface is modified by plasma etching and the surface defects are gradually removed, so the fatigue life increases from 66 to 80 times, an improvement of 21.2%. The sample by plasma etching and then TiAlN hard coating has better surface quality and a significantly greater fatigue life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All necessary data is shown in the figures and tables within the document. The raw data can be made available upon request.

Code availability

Not applicable.

References

  1. Deligianni DD, Katsala N, Ladas S, Sotiropoulou D, Amedee J, Missirlis YF (2001) Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption. Biomaterials 22:1241–1251. https://doi.org/10.1016/S0142-9612(00)00274-X

    Article  Google Scholar 

  2. Kumar S, Singh R, Batish A, Singh TP, Singh R (2018) Multi-optimisation of electric discharge machining parameters for cryogenically treated pure titanium using grey-Taguchi technique. Int J Mach Mach Mater 20:214–235. https://www.inderscienceonline.com/doi/abs/10.1504/IJMMM.2018.093532

    Google Scholar 

  3. Hascalık A, Caydas U (2007) A comparative study of surface integrity of Ti–6Al–4V alloy machined by EDM and AECG. J Mater Process Technol 190:173–180. https://doi.org/10.1016/j.jmatprotec.2007.02.048

    Article  Google Scholar 

  4. Rahul MDK, Datta S, Masanta M (2018) Effects of tool electrode on EDM performance of Ti-6Al-4V. Silicon 10:2263–2277. https://sci-hub.se/10.1007/s12633-018-9760-0

    Article  Google Scholar 

  5. Huang CH, Yang AB, Hsu CY (2018) The optimization of micro EDM milling of Ti-6Al-4V using a grey Taguchi method and its improvement by electrode coating. Int J Adv Manuf Technol 96:3851–3859. https://sci-hub.se/10.1007/s00170-018-1841-0

    Article  Google Scholar 

  6. Yan BH, Tsai HC, Huang FY (2005) The effect in EDM of a dielectric of a urea solution in water on modifying the surface of titanium. Int J Mach Tools Manuf 45:194–200. https://doi.org/10.1016/j.ijmachtools.2004.07.006

    Article  Google Scholar 

  7. Kao JY, Tsao CC, Wang SS, Hsu CY (2010) Optimization of the EDM parameters on machining Ti–6Al–4V with multiple quality characteristics. Int J Adv Manuf Technol 47:395–402. https://sci-hub.se/10.1007/s00170-009-2208-3

    Article  Google Scholar 

  8. Bhaumik M, Maity K (2018) Effect of different tool materials during EDM performance of titanium grade 6 alloy. Eng Sci Technol Int J 21:507–516. https://doi.org/10.1016/j.jestch.2018.04.018

    Article  Google Scholar 

  9. Perumal A, Azhagurajan A, Baskaran S, Prithivirajan R, Narayansamy P (2019) Statistical evaluation and performance analysis of electrical discharge machining (EDM) characteristics of hard Ti-6Al-2Sn-4Zr-2Mo alloy. Mater Res Express 6:056552–056559. https://sci-hub.se/10.1088/2053-1591/ab06da

    Article  Google Scholar 

  10. Khan F, Kumar J, Soota T (2020) Optimization of EDM process parameter for stainless steel D3. Mater Today Proc 25:635–638. https://doi.org/10.1016/j.matpr.2019.07.529

    Article  Google Scholar 

  11. Liang JF, Liao YS, Kao JY, Huang CH, Hsu CY (2018) Study of the EDM performance to produce a stable process and surface modification. Int J Adv Manuf Technol 95:1743–1750. https://sci-hub.se/10.1007/s00170-017-1315-9

    Article  Google Scholar 

  12. Selvarajan L, Kumar NS, Raja R, Sasikumar R, Muralidharan V (2021) Effects of process parameter on performance measures in electrical discharge machining using copper and brass electrodes. Mater Today Proc 46:9257–9262. https://doi.org/10.1016/j.matpr.2020.01.551

    Article  Google Scholar 

  13. Kumar S, Singh R, Singh TP, Sethi BL (2009) Surface modification by electrical discharge machining: A review. J Mater Process Technol 209:3675–3687. https://doi.org/10.1016/j.jmatprotec.2008.09.032

    Article  Google Scholar 

  14. Kuo CG, Hsu CY, Chen JH, Lee PW (2017) Discharge current effect on machining characteristics and mechanical properties of aluminum alloy 6061 workpiece produced by electric discharging machining process. Adv Mech Eng 9:1–8. https://doi.org/10.1177/1687814017730756

    Article  Google Scholar 

  15. Hsu RC, Huang CH, Yu MS (2018) Mechanical and fatigue properties of electro-less Ni-P coating on brass substrates by plasma-etched pretreatment. Int J Fatigue 112:63–69. https://doi.org/10.1016/j.ijfatigue.2018.02.030

    Article  Google Scholar 

  16. Ali MA, Samsul M, Hussein NIS, Rizal M, Izamshah R, Hadzley M, Kasim MS, Sulaiman MA, Sivarao S (2013) The effect of edm die-sinking parameters on material removal rate of beryllium copper using full factorial method. Middle East J Sci Res 16:44–50. https://doi.org/10.5829/idosi.mejsr.2013.16.01.2249

    Article  Google Scholar 

  17. Strasky J, Janegek M, Harcuba P, Bukovina M, Wagner L (2011) The effect of microstructure on fatigue performance of Ti–6Al–4V alloy after EDM surface treatment for application in orthopaedics. J Mech Behav Biomed Mater 4:1955–1962. https://doi.org/10.1016/j.jmbbm.2011.06.012

    Article  Google Scholar 

  18. Kiyak M, Cakir O (2007) Examination of machining parameters on surface roughness in EDM of tool steel. J Mater Process Technol 191:141–144. https://doi.org/10.1016/j.jmatprotec.2007.03.008

    Article  Google Scholar 

  19. Wang CC, Chow HM, Yang LD, Lu CT (2009) Recast layer removal after electrical discharge machining via Taguchi analysis: a feasibility study. J Mater Process Technol 209:4134–4140. https://doi.org/10.1016/j.jmatprotec.2008.10.012

    Article  Google Scholar 

  20. Kumar KL, Rao CS, Sateesh B, Viswanath MSR (2020) Analysis of micro-cracks and micro-hardness in white layer formation on machined surfaces in EDM process. Adv Appl Mech Eng 899:955–963. https://doi.org/10.1007/978-981-15-1201-8_102

    Article  Google Scholar 

  21. Rocha SSD, Adabo GL, Henriques GEP, Nobilo MADA (2006) Vickers hardness of cast commercially pure titanium and Ti-6Al-4V alloy submitted to heat treatments. Braz Dent J 17:126–129. https://doi.org/10.1590/S0103-64402006000200008

    Article  Google Scholar 

  22. Muthuramalingam T, Mohan B, Jothilingam A (2014) Effect of tool electrode resolidification on surface hardness in electrical discharge machining. Mater Manuf Process 29:1374–1380. https://doi.org/10.1080/10426914.2014.930956

    Article  Google Scholar 

  23. Liew PJ, Yap CY, Wang J, Zhou T, Yan J (2020) Surface modification and functionalization by electrical discharge coating: a comprehensive review. Int J Extreme Manuf 2:012004–012036. https://iopscience.iop.org/article/10.1088/2631-7990/ab7332/meta

    Article  Google Scholar 

  24. Das A, Misra JP (2012) Experimental investigation on surface modification of aluminum by electric discharge coating process using TiC/Cu green compact tool-electrode. Mach Sci Technol 16:601–623. https://doi.org/10.1080/10910344.2012.731951

    Article  Google Scholar 

  25. Hsu HY, Hu CC (2017) Surface quality improvement of EDMed Ti–6Al–4V alloy using plasma etching and TiN coating. Int J Adv Manuf Technol 88:67–74. https://doi.org/10.1007/s00170-016-8760-8

    Article  Google Scholar 

  26. Sheu SH, Tai SH, Hsieh YT, Lin TC (2009) Monitoring process mean and variability with generally weighted moving average control charts. Comput Ind Eng 57:401–407. https://doi.org/10.1016/j.cie.2008.12.010

    Article  Google Scholar 

  27. Haridy S, Maged A, Kaytbay S, Araby S (2017) Effect of sample size on the performance of Shewhart control charts. Int J Adv Manuf Technol 90:1177–1185. https://doi.org/10.1007/s00170-016-9412-8

    Article  Google Scholar 

  28. Khaliq QUA, Riaz M, Alemi F (2015) Performance of Tukey’s and individual/movingrange control charts. Qual Reliab Eng Int 31:1063–1077. https://doi.org/10.1002/qre.1664

    Article  Google Scholar 

  29. Tang J, Xiaodong Y (2018) Simulation investigation of thermal phase transformation and residual stress in single pulse EDM of Ti–6Al–4V. J Phys D Appl Phys 51:135308–135320. https://iopscience.iop.org/article/10.1088/1361-6463/aab1a8/meta

    Article  Google Scholar 

  30. Kuo CG, Hsu CY, Chen JH, Lee PW (2018) Surface modification and fatigue properties of electrical discharge machined aluminum alloy 6061 using plasma etching. Adv Mech Eng 10:1–7. https://doi.org/10.1177/1687814017752484

    Article  Google Scholar 

  31. Twu MJ, Hu CC, Liu DW, Hsu CY, Kuo CG (2016) Effects of TiN, CrN and TiAlN coatings using reactive sputtering on the fatigue behaviour of AA2024 and medium carbon steel specimens. J Exp Nanosci 11:581–592. https://doi.org/10.1080/17458080.2015.1100332

    Article  Google Scholar 

  32. Lin C, Li X, Xu C (2019) Fabrication of Al and Ga co-doped ZnO films on flexible substrates and control charts monitor deposition process. Phys Status Solidi A 216:1801015–1801025. https://doi.org/10.1002/pssa.201801015

    Article  Google Scholar 

  33. Huang H, Wu MC, Liang T, Chen DY, Tsao CC, Hsu CY (2020) Substrate pretreatment using plasma etching to enhance electroless Ni-P coatings performance. Int J Electrochem Sci 15:7093–7105. https://doi.org/10.20964/2020.07.93

    Article  Google Scholar 

  34. Yun DY, Choi WS, Park YS, Hong B (2008) Effect of H2 and O2 plasma etching treatment onthe surface of diamond-like carbon thin film. Appl Surf Sci 254:7925–7928. https://doi.org/10.1016/j.apsusc.2008.03.170

    Article  Google Scholar 

  35. Cizek J, Kovarik O, Siegl J, Khor KA, Dlouhy I (2013) Influence of plasma and cold spray deposited Ti layers on high-cycle fatigue properties of Ti-6Al-4V substrates. Surf Coat Technol 217:23–33. https://doi.org/10.1016/j.surfcoat.2012.11.067

    Article  Google Scholar 

  36. Huang H, Chen CS, Hu CC, Lee LW, Hsu CY (2020) Structure and mechanical performance for TiAlN films that are grown with a low Al composition. Mater Res Express 7:086401–086412. https://iopscience.iop.org/article/10.1088/2053-1591/aba9f6/meta

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Albert Wen-Jeng Hsue (Department of Mold and Die Engineering, National Kaohsiung University of Applied Sciences, Taiwan) who provided the idea of the revised manuscript.

Funding

This work was partially supported by the 2022 Innovation Team Project of Colleges and Universities of Guangdong Province (Serial number: 537, Project Name: Intelligent equipment innovation team based on machine vision), 2020 Innovation Team Project of Colleges and Universities of Guangdong Province (Project No.: 2020KCXTD066), 2020 Dongguan Science and Technology Commissioner project (Project No.: 20201800500242), and the Ministry of Science and Technology of the Republic of China, through Grant nos. MOST 110-2622-E-262-001 and MOST 111-2221-E-262-005-.

Author information

Authors and Affiliations

Authors

Contributions

Zhi-wei Liu: conceptualization; Zhi-wei Liu, Chung-Wei Hsu, Chung-Wei Hsu, Shang-Hua Wu: experimentation; Chung-Wei Hsu, Shang-Hua Wu, Jia-Sheng Zhou: characterization; Jin-Yih Kao, Chun-Yao Hsu: validation; Zhi-wei Liu, Jin-Yih Kao: analysis; Chun-Yao Hsu: writing—original draft.

Corresponding authors

Correspondence to Jin-Yih Kao or Chun-Yao Hsu.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, ZW., Hsu, CW., Wu, SH. et al. Performance and increased fatigue life for a Ti workpiece produced by the EDM process. Int J Adv Manuf Technol 122, 1629–1639 (2022). https://doi.org/10.1007/s00170-022-09999-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-09999-z

Keywords

Navigation