Skip to main content
Log in

Online chatter monitor system based on rapid detection method and wireless communication

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Chatter is a serious self-excited vibration, which can lead to many issues in machining; thus, an effective online chatter detection method is highly demanded. However, the pre-processing such as decomposition on the collected signals that was usually used in the literature costs a long time, thus compromising its online capacity. In this study, a rapid chatter detection method is investigated aiming at establishing a monitor system based on wireless communication. Firstly, the feasibility of not using pre-processing on vibration signals in milling chatter detection was demonstrated. Fractal dimension (FD) algorithms, including Katz’s and Higuchi’s approaches, and power spectral entropy algorithm, as well as a typical pre-processing method, empirical mode decomposition (EMD), were studied comparatively. It was found that Katz’s FD without EMD can monitor chatter effectively and the most rapidly; thus, it can be considered as the most favorable option for chatter monitor within the scope of this study. Based on such a finding, an online chatter monitor system was established by using Zigbee wireless communication technique. The comprehensive performance, including time cost, power consumption and packet loss rate of the established system were tested. The signal credibility and ability to monitor chatter of the system was also verified in practical milling, suggesting that it could meet the requirements of online chatter monitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Availability of data and materials

The data presented in this study are available upon request with reasonable causes from the corresponding author.

Code availability

The custom codes used in this study are available upon request with reasonable causes from the corresponding author.

References

  1. Nam S, Eren B, Hayasaka T, Sencer B, Shamoto E (2021) Analytical prediction of chatter stability for modulated turning. Int J Mach Tools Manuf. https://doi.org/10.1016/j.ijmachtools.2021.103739. URL <GotoISI>://WOS:000656648600001

    Article  Google Scholar 

  2. Zhou K, Zhang JF, Xu C, Feng PF, Wu ZJ (2018) Effects of helix angle and multi-mode on the milling stability prediction using full-discretization method. Precis Eng-J Int Soc Precis Eng 54:39–50. https://doi.org/10.1016/j.precisioneng.2018.04.016. URL <GotoISI>://WOS:000452579900005

    Article  Google Scholar 

  3. Zhu LD, Liu CF (2020) Recent progress of chatter prediction, detection and suppression in milling. Mech Syst Signal Process. https://doi.org/10.1016/j.ymssp.2020.106840. URL <GotoISI>://WOS:000530653100020

    Article  Google Scholar 

  4. Lamraoui M, Thomas M, El Badaoui M, Girardin E (2014) Indicators for monitoring chatter in milling based on instantaneous angular speeds. Mech Syst Signal Proc 44(1–2):72–85. https://doi.org/10.1016/j.ymssp.2013.05.002. URL <GotoISI>://WOS:000332048300007

    Article  Google Scholar 

  5. Yue CX, Gao HN, Liu XL, Liang SY, Wang LH (2019) A review of chatter vibration research in milling. Chin J Aeronaut 32(2):215–242. https://doi.org/10.1016/j.cja.2018.11.007. URL <GotoISI>://WOS:000459794000001

    Article  Google Scholar 

  6. Yang K, Wang G, Dong Y, Zhang Q, Sang L (2019) Early chatter identification based on an optimized variational mode decomposition. Mech Syst Signal Proc 115:238–254. https://doi.org/10.1016/j.ymssp.2018.05.052. URL <GotoISI>://WOS:000447085500016

    Article  Google Scholar 

  7. Li XH, Wan SK, Huang XW, Hong J (2020) Milling chatter detection based on vmd and difference of power spectral entropy. Int J Adv Manuf Technol 111(7–8):2051–2063. https://doi.org/10.1007/s00170-020-06265-y. URL <GotoISI>://WOS:000583420000001

    Article  Google Scholar 

  8. Ji Y, Wang X, Liu Z, Wang H, Jiao L, Wang D, Leng S (2018) Early milling chatter identification by improved empirical mode decomposition and multi-indicator synthetic evaluation. J Sound Vibr 433:138–159. https://doi.org/10.1016/j.jsv.2018.07.019. URL <GotoISI>://WOS:000442656300010

    Article  Google Scholar 

  9. Liu C, Zhu L, Ni C (2018) Chatter detection in milling process based on vmd and energy entropy. Mech Syst Signal Proc 105:169–182. https://doi.org/10.1016/j.ymssp.2017.11.046. URL <GotoISI>://WOS:000424188600010

    Article  Google Scholar 

  10. Cao H, Lei Y, He Z (2013) Chatter identification in end milling process using wavelet packets and hilbert-huang transform. Int J Mach Tools Manuf 69:11–19. https://doi.org/10.1016/j.ijmachtools.2013.02.007. URL <GotoISI>://WOS:000319547700002

    Article  Google Scholar 

  11. Choi T, Shin YC (2003) On-line chatter detection using wavelet-based parameter estimation. J Manuf Sci Eng-Trans ASME 125(1):21–28. https://doi.org/10.1115/1.1531113. URL <GotoISI>://WOS:000181623900003

    Article  Google Scholar 

  12. Fu Y, Zhang Y, Zhou H, Li D, Liu H, Qiao H, Wang X (2016) Timely online chatter detection in end milling process. Mech Syst Signal Proc 75:668–688. https://doi.org/10.1016/j.ymssp.2016.01.003. URL <GotoISI>://WOS:000372558800039

    Article  Google Scholar 

  13. Mandelbrot BB (1991) The fractal geometry of nature (revised edition), Computers & Geosciences, vol 17. W. H, Freeman, New York

    Google Scholar 

  14. Hadjileontiadis LJ, Douka E, Trochidis A (2005) Fractal dimension analysis for crack identification in beam structures. Mech Syst Signal Proc 19(3):659–674. https://doi.org/10.1016/j.ymssp.2004.03.005. URL <GotoISI>://WOS:000225868200012

    Article  Google Scholar 

  15. Yang J, Zhang Y, Zhu Y (2007) Intelligent fault diagnosis of rolling element bearing based on svms and fractal dimension. Mech Syst Signal Proc 21(5):2012–2024. https://doi.org/10.1016/j.ymssp.2006.10.005. URL <GotoISI>://WOS:000246266700004

    Article  Google Scholar 

  16. Andrzejak RG, Mormann F, Widman G, Kreuz T, Elger CE, Lehnertz K (2006) Improved spatial characterization of the epileptic brain by focusing on nonlinearity. Epilepsy Res 69(1):30–44. https://doi.org/10.1016/j.eplepsyres.2005.12.004. URL <GotoISI>://WOS:000237278500003

    Article  Google Scholar 

  17. Polychronaki GE, Ktonas PY, Gatzonis S, Siatouni A, Asvestas PA, Tsekou H, Sakas D, Nikita KS (2010) Comparison of fractal dimension estimation algorithms for epileptic seizure onset detection. J Neural Eng 7(4). https://doi.org/10.1088/1741-2560/7/4/046007. URL <GotoISI>://WOS:000280038600011

  18. Higuchi T (1988) Approach to an irregular time-series on the basis of the fractal theory. Physica D 31(2):277–283. https://doi.org/10.1016/0167-2789(88)90081-4. URL <GotoISI>://WOS:A1988P346600008

    Article  MathSciNet  MATH  Google Scholar 

  19. Katz MJ, George EB (1985) Fractals and the analysis of growth paths. Bull Math Biol 47(2):273–286. URL <GotoISI>://WOS:A1985ANC3900008

  20. Chen Y, Li H, Hou L, Bu X, Ye S, Chen D (2022) Chatter detection for milling using novel p-leader multifractal features. J Intell Manuf 33(1):121–135. https://doi.org/10.1007/s10845-020-01651-5

    Article  Google Scholar 

  21. Zhuo Y, Jin H, Han Z (2020) Chatter identification in flank milling of thin-walled blade based on fractal dimension. Proc Manuf 49:150–154

    Google Scholar 

  22. Ji YJ, Wang XB, Liu ZB, Yan ZG, Jiao L, Wang DQ, Wang JQ (2017) Eemd-based online milling chatter detection by fractal dimension and power spectral entropy. Int J Adv Manuf Technol 92(1–4):1185–1200. https://doi.org/10.1007/s00170-017-0183-7. URL <GotoISI>://WOS:000407815500094

    Article  Google Scholar 

  23. Luo M, Luo H, Axinte D, Liu D, Mei J, Liao Z (2018) A wireless instrumented milling cutter system with embedded pvdf sensors. Mech Syst Signal Process 110:556–568

    Article  Google Scholar 

  24. Uquillas DR, Hsiao T (2016) Wireless tool holder sensor design for cutting force measurement applied to chatter detection. In: 2016 IEEE Region 10 Conference (TENCON), IEEE, vol. 18, pp 1845–1848

  25. Guo K, Sun J (2021) An integrated wireless vibration sensing tool holder for milling tool condition monitoring with singularity analysis. Measurement 174

    Article  Google Scholar 

  26. Katz MJ (1988) Fractals and the analysis of waveforms. Comput Biol Med 18(3):145–156. https://doi.org/10.1016/0010-4825(88)90041-8. URL <GotoISI>://WOS:A1988P083300001

    Article  Google Scholar 

  27. Esteller R, Vachtsevanos G, Echauz J, Lilt B (1999) A comparison of fractal dimension algorithms using synthetic and experimental data. ISCAS’99 Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat No99CH36349), pp 199–202 vol. 3. https://doi.org/10.1109/iscas.1999.778819. URL <GotoISI>://INSPEC:6430421

  28. Zhang Z, Li H, Meng G, Tu X, Cheng C (2016) Chatter detection in milling process based on the energy entropy of vmd and wpd. Int J Mach Tools Manuf 108:106–112. https://doi.org/10.1016/j.ijmachtools.2016.06.002. URL <GotoISI>://WOS:000391803500010

    Article  Google Scholar 

  29. Huang NE, Shen Z, Long SR, Wu MLC, Shih HH, Zheng QN, Yen NC, Tung CC, Liu HH (1998) The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc A Math Phys Eng Sci 454(1971):903–995. https://doi.org/10.1098/rspa.1998.0193. URL <GotoISI>://WOS:000072668500010

    Article  MathSciNet  MATH  Google Scholar 

  30. Altintas Y, Budak E (1998) Analytical prediction of chatter stability in milling-part i: general formulation. J Dyn Syst Meas Control-Trans ASME 120:22–30

    Article  Google Scholar 

  31. Casusol AJ, Zegarra FC, Vargas-Machuca J, Coronado AM (2021) Optimal window size for the extraction of features for tool wear estimation. In: 2021 IEEE XXVIII International Conference on Electronics, Electrical Engineering and Computing (INTERCON), IEEE, vol. 18, pp 1–4

  32. Liang J, Zhang Y, Zhong JH, Yang H (2019) A novel multi-segment feature fusion based fault classification approach for rotating machinery. Mech Syst Signal Process 122:19–41

    Article  Google Scholar 

  33. Navarro-Devia J, Chen Y, Li H, Dao DV (2022) Assessment of features from multiple sensors in monitoring titanium milling. Int J Mach Mach Mater 24:1. https://doi.org/10.1504/IJMMM.2022.10044698

    Article  Google Scholar 

  34. Shi J, Liang M, Guan Y (2016) Bearing fault diagnosis under variable rotational speed via the joint application of windowed fractal dimension transform and generalized demodulation: a method free from prefiltering and resampling. Mech Syst Signal Proc 68–69:15–33. https://doi.org/10.1016/j.ymssp.2015.08.019. URL <GotoISI>://WOS:000362916800002

    Article  Google Scholar 

  35. Cao H, Zhou K, Chen X (2015) Chatter identification in end milling process based on eemd and nonlinear dimensionless indicators. Int J Mach Tools Manuf 92:52–59. https://doi.org/10.1016/j.ijmachtools.2015.03.002. URL <GotoISI>://WOS:000353098200006

    Article  Google Scholar 

  36. Aslan D, Altintas Y (2018) On-line chatter detection in milling using drive motor current commands extracted from cnc. Int J Mach Tool Manu 132:64–80. https://doi.org/10.1016/j.ijmachtools.2018.04.007. URL <GotoISI>://WOS:000442645200006

    Article  Google Scholar 

  37. Marei M, Li W (2022) Cutting tool prognostics enabled by hybrid cnn-lstm with transfer learning. Int J Adv Manuf Technol 118(3):817–836

    Article  Google Scholar 

  38. Zhai Y, Gao H, Wang Y, Li R (2019) Influence of cutting parameters on force coefficients and stability in plunge milling. Int J Adv Manuf Technol 104(5):2513–2523

    Article  Google Scholar 

  39. You X, Wang CX, Huang J, Gao X, Zhang Z et al (2021) Towards 6g wireless communication networks: vision, enabling technologies, and new paradigm shifts. Sci China Technol Sci 64(1). https://doi.org/10.1007/s11432-020-2955-6. URL <GotoISI>://WOS:000597333100001

  40. Li JQ, Yu FR, Deng GQ, Luo CW, Ming Z, Yan Q (2017) Industrial internet: a survey on the enabling technologies, applications, and challenges. IEEE Commun Surv Tutor 19(3):1504–1526. https://doi.org/10.1109/comst.2017.2691349. URL <GotoISI>://WOS:000408253800007

    Article  Google Scholar 

  41. Suprock CA, Nichols JS (2009) A low cost wireless high bandwidth transmitter for sensor-integrated metal cutting tools and process monitoring. Int J of Mechatronics and Manufacturing Systems 2(4)

  42. Lennvall T, Svensson S, Hekland F (2008) A Comparison of WirelessHART and ZigBee for Industrial Applications. Wfcs, (2008) IEEE International Workshop on Factory Communication Systems. Proceedings, IEEE, New York. https://doi.org/10.1109/wfcs.2008.4638746

  43. Totis G, Wirtz G, Sortino M, Veselovac D, Kuljanic E, Klocke F (2010) Development of a dynamometer for measuring individual cutting edge forces in face milling. Mech Syst Signal Proc 24(6):1844–1857. https://doi.org/10.1016/j.ymssp.2010.02.010. URL <GotoISI>://WOS:000279680400017

    Article  Google Scholar 

  44. Guo-Jin F, Gu J, Dong Z, Aliwan M, Feng-Shou G, Ball AD (2015) Implementation of envelope analysis on a wireless condition monitoring system for bearing fault diagnosis. Int J Autom Comput 12(1):14–24. https://doi.org/10.1007/s11633-014-0862-x. URL <GotoISI>://INSPEC:15368412

    Article  Google Scholar 

  45. Vlajic N, Stevanovic D, Spanogiannopoulos G (2011) Strategies for improving performance of IEEE 802.15.4/zigbee wsns with path-constrained mobile sink(s). Comput Commun 34(6):743–757. https://doi.org/10.1016/j.comcom.2010.09.012. URL <GotoISI>://WOS:000288926000005

  46. Baronti P, Pillai P, Chook VWC, Chessa S, Gotta A, Hu YF (2007) Wireless sensor networks: a survey on the state of the art and the 802.15.4 and zigbee standards. Comput Commun 30(7):1655–1695. https://doi.org/10.1016/j.comcom.2006.12.020. URL <GotoISI>://WOS:000246334800019

  47. Farahani S (2008) ZigBee wireless networks and transceivers. Newnes, Burlington

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. Binbin Liu, Mr. Shaocong Wang and Mr. Yousheng Xia of Tsinghua University for their efforts in establishing the calculation programs of fractal analysis.

Funding

This study was supported by National Natural Science Foundation of China under Grant No. 51875311, Guangdong Basic and Applied Basic Research Foundation under Grant No. 2020A1515011199, and Shenzhen Foundational Research Project under Grant No. WDZC20200817152115001.

Author information

Authors and Affiliations

Authors

Contributions

The authors Xueyu Mei, Haoming Xu and Feng Feng carried out the research and wrote the original manuscript. Pingfa Feng, Yuan Ma and Chao Xu assisted with conceptualization of the investigation. Meng Yuan assisted with the data analysis and manuscript editing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Feng Feng.

Ethics declarations

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mei, X., Xu, H., Feng, P. et al. Online chatter monitor system based on rapid detection method and wireless communication. Int J Adv Manuf Technol 122, 1321–1337 (2022). https://doi.org/10.1007/s00170-022-09941-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-09941-3

Keywords

Navigation