Skip to main content
Log in

Dynamic modeling and nonlinear vibration analysis of spindle system during ball end milling process

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In cutting process, the insufficiency in grasp of the tool vibration characteristics of spindle system seriously hinders the improvement of machining quality and efficiency. Thus, this paper develops a novel dynamic model of spindle system in ball end milling process considering the nonlinear contact behavior of bearings. For the sake of coupling with the motion differential equations of spindle shaft, a general analytical expression for the nonlinear contact force of matched angular contact ball bearings is proposed. Then, dynamic cutting force model during ball end milling is established with consideration of the influence of tool vibration on the uncut chip thickness. Furthermore, the effectiveness and feasibility of the proposed model is confirmed by some cutting tests. Finally, the effects of rotation speed, bearing preload, and cutting parameters on the tool end vibration response of spindle system are analyzed in detail. The investigations reveal that the main resonance frequency increases and the corresponding resonance amplitude decreases as bearing preload increases. The larger bearing preload can improve cutting stability and machining quality. It is also concluded that the change regarding axial depth of cut considerably affects the vibration behaviors of tool end. The proposed dynamic model can be applied to predict the vibration of spindle system during ball end milling, especially the tool vibration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability

Data related to the results of this paper are included in the paper or are available from the corresponding author.

References

  1. Chao S, Altintas Y (2016) Chatter free tool orientations in 5-axis ball-end milling. Int J Mach Tools Manuf 106:89–97

    Article  Google Scholar 

  2. Abele E, Altintas Y, Brecher C (2010) Machine tool spindle units. CIRP Ann-Manuf Technol 59:781–802

    Article  Google Scholar 

  3. Zhang J, Liu C (2019) Chatter stability prediction of ball-end milling considering multi-mode regenerations. Int J Adv Manuf Technol 100:131–142

    Article  Google Scholar 

  4. Aini R, Rahnejat H, Gohar R (1990) A five degrees of freedom analysis of vibrations in precision spindles. Int J Mach Tools Manuf 30:1–18

    Article  Google Scholar 

  5. Alfares M, Elsharkawy A (2000) Effect of grinding forces on the vibration of grinding machine spindle system. Int J Mach Tools Manuf 40:2003–2030

    Article  Google Scholar 

  6. Alfares M, Elsharkawy A (2003) Effects of axial preloading of angular contact ball bearings on the dynamics of a grinding machine spindle system. J Mater Process Technol 136:48–59

    Article  Google Scholar 

  7. Karacay T, Akturk N (2008) Vibrations of a grinding spindle supported by angular contact ball bearings. Proc Inst Mech Eng Pt K-J Multi-Body Dyn 222:61–75

    Google Scholar 

  8. Zhang SJ, To S, Cheung CF, Wang HT (2012) Dynamic characteristics of an aerostatic bearing spindle and its influence on surface topography in ultra-precision diamond turning. Int J Mach Tools Manuf 62:1–12

    Article  Google Scholar 

  9. Zhang SJ, To S, Wang HT (2013) A theoretical and experimental investigation into five-DOF dynamic characteristics of an aerostatic bearing spindle in ultra-precision diamond turning. Int J Mach Tools Manuf 71:1–10

    Article  Google Scholar 

  10. Zhang SJ, To S (2013) The effects of spindle vibration on surface generation in ultra-precision raster milling. Int J Mach Tools Manuf 71:52–56

    Article  Google Scholar 

  11. Gao SH, Long XH, Meng G (2008) Nonlinear response and nonsmooth bifurcations of an unbalanced machine-tool spindle-bearing system. Nonlinear Dyn 54:365–377

    Article  Google Scholar 

  12. Miao H, Li C, Wang C, Xu M, Zhang Y (2021) The vibration analysis of the CNC vertical milling machine spindle system considering nonlinear and nonsmooth bearing restoring force. Mech Syst Signal Proc 161:107970

    Article  Google Scholar 

  13. Cao Y, Altintas Y (2004) A general method for the modeling of spindle-bearing systems. J Mech Design 126:1089–1104

    Article  Google Scholar 

  14. Cao H, Shi F, Li Y, Li B, Chen X (2019) Vibration and stability analysis of rotor-bearing-pedestal system due to clearance fit. Mech Syst Signal Proc 133:106275

    Article  Google Scholar 

  15. Xi S, Cao H, Chen X, Niu L (2018) A dynamic modeling approach for spindle bearing system supported by both angular contact ball bearing and floating displacement bearing. J Manuf Sci Eng-Trans ASME 140:021014

    Article  Google Scholar 

  16. Xi S, Cao H, Chen X (2019) Dynamic modeling of spindle bearing system and vibration response investigation. Mech Syst Signal Proc 133:106275

    Article  Google Scholar 

  17. Hong SW, Tong VC (2016) Rolling-element bearing modeling: a review. Int J Precis Eng Man 17:1729–1749

    Article  Google Scholar 

  18. Xu M, Cai B, Li C, Zhang H, Liu Z, He D, Zhang Y (2020) Dynamic characteristics and reliability analysis of ball screw feed system on a lathe. Mech Mach Theory 150:103890

    Article  Google Scholar 

  19. Wang W, Zhou Y, Wang H, Li C, Zhang Y (2019) Vibration analysis of a coupled feed system with nonlinear kinematic joints. Mech Mach Theory 134:562–581

    Article  Google Scholar 

  20. Noel D, Ritou M, Furet B, Le Loch S (2013) Complete analytical expression of the stiffness matrix of angular contact ball bearings. J Tribol-Trans ASME 135:041101

    Article  Google Scholar 

  21. Liu Y, Zhang Y (2019) A research on the time-varying stiffness of the ball bearing considering the time-varying number of laden balls and load distribution. Proc Inst Mech Eng Part C-J Eng Mech Eng Sci 233:4381–4396

    Article  Google Scholar 

  22. Gunduz A, Singh R (2013) Stiffness matrix formulation for double row angular contact ball bearings: Analytical development and validation. J Sound Vibr 332:5898–5916

    Article  Google Scholar 

  23. Xu T, Yang L, Wu W, Wang K (2021) Effect of angular misalignment of inner ring on the contact characteristics and stiffness coefficients of duplex angular contact ball bearings. Mech Mach Theory 157:104178

    Article  Google Scholar 

  24. Wojciechowski S, Twardowski P (2012) Tool life and process dynamics in high speed ball end milling of hardened steel. Procedia CIRP 1:289–294

    Article  Google Scholar 

  25. Lee P, Altintas Y (1996) Prediction of ball–end milling forces from orthogonal cutting data. Int J Mach Tools Manuf 36:1059–1072

    Article  Google Scholar 

  26. Wojciechowski S, Twardowski P, Pelic M (2014) Cutting forces and vibrations during ball end milling of inclined surfaces. Procedia CIRP 14:113–118

    Article  Google Scholar 

  27. Wojciechowski S, Chwalczuk T, Twardowski P, Krolczyk GM (2015) Modeling of cutter displacements during ball end milling of inclined surfaces. Arch Civ Mech Eng 15:798–805

    Article  Google Scholar 

  28. Wojciechowski S, Twardowski P, Pelic M, Maruda RW, Barrans S, Krolczyk GM (2016) Precision surface characterization for finish cylindrical milling with dynamic tool displacements model. Precis Eng-J Int Soc Precis Eng Nanotechnol 46:158–165

    Google Scholar 

  29. Wojciechowski S, Mrozek K (2017) Mechanical and technological aspects of micro ball end milling with various tool inclinations. Int J Mech Sci 134:424–435

    Article  Google Scholar 

  30. Wojciechowski S, Maruda RW, Nieslony P, Krolczyk GM (2016) Investigation on the edge forces in ball end milling of inclined surfaces. Int J Mech Sci 119:360–369

    Article  Google Scholar 

  31. Honeycutt A, Schmitz TL (2016) A new metric for automated stability identification in time domain milling simulation. J Manuf Sci Eng-Trans ASME 138:074501

    Article  Google Scholar 

  32. Sonawane H, Joshi SS (2018) Modeling of chip geometry in ball-end milling of superalloy using strains in deformed chip (SDC) approach. Int J Mach Tools Manuf 130:49–64

    Article  Google Scholar 

  33. Wei ZC, Wang MJ, Zhu JN, Gu LY (2011) Cutting force prediction in ball end milling of sculptured surface with Z-level contouring tool path. Int J Mach Tools Manuf 51:428–432

    Article  Google Scholar 

  34. Wang JJ, Zheng CM (2002) Identification of shearing and ploughing cutting constants from average forces in ball-end milling. Int J Mach Tools Manuf 42:695–705

    Article  Google Scholar 

  35. Wang C, Ding P, Huang X, Li H (2021) A method for predicting ball-end cutter milling force and its probabilistic characteristics. Mech Based Des Struct Mech

  36. Lamikiz A, Lopez De Lacalle LN, Sanchez JA, Bravo U (2005) Calculation of the specific cutting coefficients and geometrical aspects in sculptured surface machining. Mach Sci Technol 9:411–436

    Article  Google Scholar 

  37. Ma H, Li H, Zhao X, Niu H, Wen B (2013) Effects of eccentric phase difference between two discs on oil-film instability in a rotor-bearing system. Mech Syst Signal Proc 41:526–545

    Article  Google Scholar 

  38. Harris TA (2001) Rolling Bearing Analysis, John Wiley & Sons

  39. Li J, Murat Kilic Z, Altintas Y (2021) General cutting dynamics model for five-axis ball-end milling operations. J Manuf Sci Eng-Trans ASME 142:121003

    Article  Google Scholar 

  40. Bathe KJ, Wilson EL (1976) Numerical methods in finite element analysis. Prentice-Hall, New Jersey

    MATH  Google Scholar 

  41. Chandra NH, Sekhar AS (2014) Swept sine testing of rotor-bearing system for damping estimation. J Sound Vib 333:604–620

    Article  Google Scholar 

Download references

Funding

The work was supported by National Natural Science Foundation of China (Grant No. 52075087) and the Fundamental Research Funds for the Central Universities (Grant Nos. N2003006 and N2203002).

Author information

Authors and Affiliations

Authors

Contributions

Huihui Miao: conceptualization, software, methodology, validation, writing—original draft, writing—review and editing. Chenyu Wang: conceptualization, investigation, visualization. Changyou Li: funding acquisition, project administration, resources, supervision, writing—review and editing. Guo Yao: resources, writing—review and editing. Xiulu Zhang: formal analysis, software. Zhendong Liu: validation, investigation, formal analysis. Mengtao Xu: resources, writing—reviewing and editing, supervision, writing—review and editing.

Corresponding authors

Correspondence to Changyou Li or Guo Yao.

Ethics declarations

Ethics approval

This paper does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

Not applicable. This paper does not include research related to humans.

Consent for publication

All authors agree to the publication of this manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The stiffness matrix of the spindle system is as follows

$$\varvec{K}_{x}=\left[\begin{array}{cccccccccccccc}{k}_{11}& {k}_{12}& {k}_{13}& {k}_{14}& & & & & & & & & & \\ {k}_{12}& {k}_{22}& {k}_{23}& {k}_{24}& & & & & & & & & & \\ {k}_{13}& {k}_{23}& {k}_{33}& {k}_{34}& {k}_{35}& {k}_{36}& & & & & & & & \\ {k}_{14}& {k}_{24}& {k}_{34}& {k}_{44}& {k}_{45}& {k}_{46}& & & & & 0& & & \\ & & {k}_{35}& {k}_{45}& {k}_{55}& {k}_{56}& {k}_{57}& {k}_{58}& & & & & & \\ & & {k}_{36}& {k}_{46}& {k}_{56}& {k}_{66}& {k}_{67}& {k}_{68}& & & & & & \\ & & & & {k}_{57}& {k}_{67}& {k}_{77}& {k}_{78}& {k}_{79}& {k}_{\mathrm{7,10}}& & & & \\ & & & & {k}_{58}& {k}_{68}& {k}_{78}& {k}_{88}& {k}_{89}& {k}_{\mathrm{8,10}}& & & & \\ & & & & & & {k}_{79}& {k}_{89}& {k}_{99}& {k}_{\mathrm{9,10}}& {k}_{\mathrm{9,11}}& {k}_{\mathrm{9,12}}& & \\ & & & & & & {k}_{\mathrm{7,10}}& {k}_{\mathrm{8,10}}& {k}_{\mathrm{9,10}}& {k}_{\mathrm{10,10}}& {k}_{\mathrm{10,11}}& {k}_{\mathrm{10,12}}& & \\ & & & 0& & & & & {k}_{\mathrm{9,11}}& {k}_{\mathrm{10,11}}& {k}_{\mathrm{11,11}}& {k}_{\mathrm{11,12}}& {k}_{\mathrm{11,13}}& {k}_{\mathrm{11,14}}\\ & & & & & & & & {k}_{\mathrm{9,12}}& {k}_{\mathrm{10,12}}& {k}_{\mathrm{11,12}}& {k}_{12,12}& {k}_{\mathrm{12,13}}& {k}_{\mathrm{12,14}}\\ & & & & & & & & & & {k}_{\mathrm{11,13}}& {k}_{\mathrm{12,13}}& {k}_{\mathrm{13,13}}& {k}_{\mathrm{13,14}}\\ & & & & & & & & & & {k}_{\mathrm{11,14}}& {k}_{\mathrm{12,14}}& {k}_{\mathrm{13,14}}& {k}_{\mathrm{14,14}}\end{array}\right]$$
(42)
$$\varvec{K}_{y}=\left[\begin{array}{cccccccccccccc}{k}_{11}& -{k}_{12}& {k}_{13}& -{k}_{14}& & & & & & & & & & \\ -{k}_{12}& {k}_{22}& -{k}_{23}& {k}_{24}& & & & & & & & & & \\ {k}_{13}& -{k}_{23}& {k}_{33}& -{k}_{34}& {k}_{35}& -{k}_{36}& & & & & & & & \\ -{k}_{14}& {k}_{24}& -{k}_{34}& {k}_{44}& -{k}_{45}& {k}_{46}& & & & & 0& & & \\ & & {k}_{35}& -{k}_{45}& {k}_{55}& -{k}_{56}& {k}_{57}& -{k}_{58}& & & & & & \\ & & -{k}_{36}& {k}_{46}& -{k}_{56}& {k}_{66}& -{k}_{67}& {k}_{68}& & & & & & \\ & & & & {k}_{57}& -{k}_{67}& {k}_{77}& -{k}_{78}& {k}_{79}& -{k}_{\mathrm{7,10}}& & & & \\ & & & & -{k}_{58}& {k}_{68}& -{k}_{78}& {k}_{88}& -{k}_{89}& {k}_{\mathrm{8,10}}& & & & \\ & & & & & & {k}_{79}& -{k}_{89}& {k}_{99}& -{k}_{\mathrm{9,10}}& {k}_{\mathrm{9,11}}& -{k}_{\mathrm{9,12}}& & \\ & & & & & & -{k}_{\mathrm{7,10}}& {k}_{\mathrm{8,10}}& -{k}_{\mathrm{9,10}}& {k}_{\mathrm{10,10}}& -{k}_{\mathrm{10,11}}& {k}_{\mathrm{10,12}}& & \\ & & & 0& & & & & {k}_{\mathrm{9,11}}& -{k}_{\mathrm{10,11}}& {k}_{\mathrm{11,11}}& -{k}_{\mathrm{11,12}}& {k}_{\mathrm{11,13}}& -{k}_{\mathrm{11,14}}\\ & & & & & & & & -{k}_{\mathrm{9,12}}& {k}_{\mathrm{10,12}}& -{k}_{\mathrm{11,12}}& {k}_{\mathrm{12,12}}& -{k}_{\mathrm{12,13}}& {k}_{\mathrm{12,14}}\\ & & & & & & & & & & {k}_{\mathrm{11,13}}& -{k}_{\mathrm{12,13}}& {k}_{\mathrm{13,13}}& -{k}_{\mathrm{13,14}}\\ & & & & & & & & & & -{k}_{\mathrm{11,14}}& {k}_{\mathrm{12,14}}& -{k}_{\mathrm{13,14}}& {k}_{\mathrm{14,14}}\end{array}\right]$$
(43)
$$\varvec{K}_{z}=\left[\begin{array}{ccccccc}{u}_{11}& {u}_{12}& & & & & \\ {u}_{12}& {u}_{22}& {u}_{23}& & & 0& \\ & {u}_{23}& {u}_{33}& {u}_{34}& & & \\ & & {u}_{34}& {u}_{44}& {u}_{45}& & \\ & & & {u}_{45}& {u}_{55}& {u}_{56}& \\ & 0& & & {u}_{56}& {u}_{66}& {u}_{67}\\ & & & & & {u}_{67}& {u}_{77}\end{array}\right]$$
(44)

The element of the stiffness matrix is calculated according to the method of flexibility influence coefficient in material mechanics, as follows

$$\left\{\begin{array}{l}{k}_{11}={b}_{11}\\ {k}_{12}={b}_{21}\\ {k}_{13}=-{b}_{11}\\ {k}_{14}={b}_{21}\end{array}\right.;\left\{\begin{array}{l}{k}_{22}={l}_{1}{b}_{21}-{b}_{31}\\ {k}_{23}=-{b}_{21}\\ {k}_{24}={b}_{31}\end{array}\right.;\left\{\begin{array}{l}{k}_{33}={b}_{11}+{b}_{12}\\ {k}_{34}=-{b}_{21}+{b}_{22}\\ {k}_{35}=-{b}_{12}\\ {k}_{36}={b}_{22}\end{array}\right.;\left\{\begin{array}{l}{k}_{44}={l}_{1}{b}_{21}-{b}_{31}+{l}_{2}{b}_{22}-{b}_{32}\\ {k}_{45}=-{b}_{22}\\ {k}_{46}={b}_{32}\end{array}\right.$$
(45)
$$\left\{\begin{array}{l}{k}_{55}={b}_{12}+{b}_{13}\\ {k}_{56}=-{b}_{22}+{b}_{23}\\ {k}_{57}=-{b}_{13}\\ {k}_{58}={b}_{23}\end{array}\right.;\left\{\begin{array}{l}{k}_{66}={l}_{2}{b}_{22}-{b}_{32}+{l}_{3}{b}_{23}-{b}_{33}\\ {k}_{67}=-{b}_{23}\\ {k}_{68}={b}_{33}\end{array}\right.;\left\{\begin{array}{l}{k}_{77}={b}_{13}+{b}_{14}\\ {k}_{78}=-{b}_{23}+{b}_{24}\\ {k}_{79}=-{b}_{14}\\ {k}_{\mathrm{7,10}}={b}_{24}\end{array}\right.;\left\{\begin{array}{l}{k}_{88}={l}_{3}{b}_{23}-{b}_{33}+{l}_{4}{b}_{24}-{b}_{34}\\ {k}_{89}=-{b}_{24}\\ {k}_{\mathrm{8,10}}={b}_{34}\end{array}\right.$$
(46)
$$\left\{\begin{array}{l}{k}_{99}={b}_{14}+{b}_{15}\\ {k}_{\mathrm{9,10}}=-{b}_{24}+{b}_{25}\\ {k}_{\mathrm{9,11}}=-{b}_{15}\\ {k}_{\mathrm{9,12}}={b}_{25}\end{array}\right.;\left\{\begin{array}{l}{k}_{\mathrm{10,10}}={l}_{4}{b}_{24}-{b}_{34}+{l}_{5}{b}_{25}-{b}_{35}\\ {k}_{\mathrm{10,11}}=-{b}_{25}\\ {k}_{\mathrm{10,12}}={b}_{35}\end{array}\right.;\left\{\begin{array}{l}{k}_{\mathrm{11,11}}={b}_{15}+{b}_{16}\\ {k}_{\mathrm{11,12}}=-{b}_{25}+{b}_{26}\\ {k}_{\mathrm{11,13}}=-{b}_{16}\\ {k}_{\mathrm{11,14}}={b}_{26}\end{array}\right.;\left\{\begin{array}{l}{k}_{\mathrm{12,12}}={l}_{5}{b}_{25}-{b}_{35}+{l}_{6}{b}_{26}-{b}_{36}\\ {k}_{\mathrm{12,13}}=-{b}_{26}\\ {k}_{\mathrm{12,14}}={b}_{36}\end{array}\right.$$
(47)
$$\left\{\begin{array}{c}{k}_{\mathrm{13,13}}={b}_{16}\\ {k}_{\mathrm{13,14}}=-{b}_{26}\\ {k}_{\mathrm{14,14}}={l}_{6}{b}_{26}-{b}_{36}\end{array}\right.$$
(48)
$$\left\{\begin{array}{c}{u}_{11}={d}_{1}\\ {u}_{12}=-{d}_{1}\\ {u}_{22}={d}_{1}+{d}_{2}\\ {u}_{23}=-{d}_{2}\end{array}\right.;\left\{\begin{array}{c}{u}_{33}={d}_{2}+{d}_{3}\\ {u}_{34}=-{d}_{3}\\ {u}_{44}={d}_{3}+{d}_{4}\\ {u}_{45}=-{d}_{4}\end{array}\right.;\left\{\begin{array}{c}{u}_{55}={d}_{4}+{d}_{5}\\ {u}_{56}=-{d}_{5}\\ {u}_{66}={d}_{5}+{d}_{6}\\ {u}_{67}=-{d}_{6}\\ {u}_{77}={d}_{6}\end{array}\right.$$
(49)

where

$${b}_{1i}=\frac{12E{I}_{i}}{{l}_{i}^{3}};{b}_{2i}=\frac{1}{2}{l}_{i}{b}_{1i};{b}_{3i}=\frac{1}{6}{l}_{i}^{2}{b}_{1i},{d}_{i}=\frac{E{A}_{i}}{{l}_{i}},\left(i=\mathrm{1,2},\mathrm{3,4},\mathrm{5,6}\right)$$
(50)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, H., Wang, C., Li, C. et al. Dynamic modeling and nonlinear vibration analysis of spindle system during ball end milling process. Int J Adv Manuf Technol 121, 7867–7889 (2022). https://doi.org/10.1007/s00170-022-09805-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-09805-w

Keywords

Navigation