Skip to main content
Log in

Tribological behavior of PTFE/Nomex/phenolic composite lubricant under cold forming condition in the bearing assembly process

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The fabric composites, which are always used as a self-lubricant liner, also work as a forming lubricant during the assembly of the spherical plain bearings. Different from previous published works, the tribological behavior of polytetrafluoroethylene (PTFE)/Nomex/phenolic composite lubricant under cold forming condition in the bearing assembly process was investigated in details. A hybrid PTFE/Nomex fabric composite with a volume fraction of 1:3 coated with phenolic resin matrix sticking on a stainless steel 05Cr17Ni4Cu4Nb was prepared for the study. The ring with boss compression test (RCT-B) was selected as a tribometer, and a specific group of calibration curves were constructed by simulations with various friction factors. To obtain favorable tribological performance of the fabric-composite lubricant, the preparation parameters of the testing workpieces, including number of sandblasting cycles, curing time, and curing temperature, were optimized. To explore the lubricate limit of the optimal fabric-composite lubricant, the RCT-B tests with much larger reduction in height under much higher press speed were furtherly carried out. The failure modes of the fabric-composite lubricant, mainly including peel off, hysteresis, and delamination, were revealed. The failure mechanisms and the applicable limitation of the fabric-composite lubricant were finally discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Bulzak T, Tomczak J, Pater Z (2021) A comparative analysis of hot and cold flashless forging of a stepped shaft using vertically-parted dies. Int J Adv Manuf Tech 116(7):2521–2530. https://doi.org/10.1007/s00170-021-07542-0

    Article  Google Scholar 

  2. Jo AR, Jeong MS, Lee SK, Moon YH, Hwang SK (2021) Multi-stage cold forging process for manufacturing a high-strength one-body input shaft. Materials (Basel) 14(3):532. https://doi.org/10.3390/ma14030532

    Article  Google Scholar 

  3. Ossenkemper S, Dahnke C, Tekkaya AE (2019) Analytical and experimental bond strength investigation of cold forged composite shafts. J Mater Process Tech 264:190–199. https://doi.org/10.1016/j.jmatprotec.2018.09.008

    Article  Google Scholar 

  4. Rohrmoser A, Hagenah H, Merklein M (2021) Adapted tool design for the cold forging of gears from non-ferrous and light metals. Int J Adv Manuf Tech 113:1833–1848. https://doi.org/10.1007/s00170-020-06449-6

    Article  Google Scholar 

  5. Liu Z, Zhou J, Qu Z, Wang X, Liang Q, Feng W (2021) A precision sizing method for cold extruded sun gear with internal-external tooth shapes. Int J Adv Manuf Tech 115:3331–3344. https://doi.org/10.1007/s00170-021-07405-8

    Article  Google Scholar 

  6. Weiß A, Deliktas T, Liewald M, Missal N (2020) Cold forging of gear components by a modified Samanta process. Forsch Ingenieurwes 84:215–221. https://doi.org/10.1007/s10010-020-00403-4

    Article  Google Scholar 

  7. Ku TW, Kang BS (2014) Tool design for inner race cold forging with skew-type cross ball grooves. J Mater Process Tech 214:1482–1502. https://doi.org/10.1016/j.jmatprotec.2014.02.021

    Article  Google Scholar 

  8. Ku TW, Kim LH, Kang BS (2014) Process simplification of multi-stage forging for the outer race of a CV joint. Mater Manuf Process 29:85–92. https://doi.org/10.1080/10426914.2013.792432

    Article  Google Scholar 

  9. M.A. Al-Shammari, L.Y. Zedan, and A.M. Al-Shammari, FE simulation of multi-stage cold forging process for metal shell of spark plug manufacturing, 1st International Scientific Conference of Engineering Sciences-3rd Scientific Conference of Engineering Science, (2018) 209–214.

  10. J. Woodhead, J.D. Booker, C.E. Truman, Impact of geometric variation on the performance of cold formed bearings, Proceedings of the First International Symposium on Robust Design, Copenhagen, Lyngby, Denmark, (2014) 159–170.

  11. J. Woodhead, J.D. Booker, Modelling of nosing for the assembly of aerospace bearings. In: Ventura CE, Crone WC and Furlong C (Eds.) Experimental and applied mechanics, New York, 2013, pp. 327–337. https://doi.org/10.1007/978-1-4614-4226-4_38

  12. Orsolini A, Booker JD (2012) Modelling capabilities required for the double nosing process in the assembly of spherical plain bearings. P I Mech Eng B-J Eng 226:930–940. https://doi.org/10.1177/0954405411434679

    Article  Google Scholar 

  13. Liu Y, Xu N, Wang Y, Yao Y, Xiao H, Jia J, Lv H, Zhang D (2019) Preparation and tribological properties of hybrid PTFE/Kevlar fabric self-lubricating composites. Surf Coat Tech 361:196–205. https://doi.org/10.1016/j.surfcoat.2018.12.121

    Article  Google Scholar 

  14. M. Qiu, X. Liang, Y.C. Li, X.X. Pang. Effects of the different modification treatment liners on tribological properties of self-lubricating spherical plain bearings and the bonding property of liners, Proceedings of 6th ICMMBE, (2016) 361–366. https://doi.org/10.2991/icmmbe-16.2016.69

  15. Qiu M, Miao Y, Li Y, Lu J (2015) Film-forming mechanisms for self-lubricating radial spherical plain bearings with hybrid PTFE/aramid fabric liners modified by ultrasonic. Tribol Int 87:132–138. https://doi.org/10.1016/j.triboint.2015.02.025

    Article  Google Scholar 

  16. Yang Y (2011) Sliding wear of the hybrid Kevlar/PTFE fabric reinforced phenolic composite filled with Nano-titania. Chin J Mech Eng 24:154–159. https://doi.org/10.1016/j.triboint.2015.02.025

    Article  Google Scholar 

  17. Zhang HJ, Zhang ZZ, Guo F (2012) Tribological behaviors of hybrid PTFE/nomex fabric/phenolic composite reinforced with multiwalled carbon nanotubes. J Appl Polym Sci 124:235–241. https://doi.org/10.1002/app.33594

    Article  Google Scholar 

  18. G. Ren, Z. Zhang, X. Zhu, B. Ge, F. Guo, X. Men, W. Liu, Influence of functional graphene as filler on the tribological behaviors of Nomex fabric/phenolic composite, Compos. Part A-Appl. S. 49 (2013) 157–164. Error! Hyperlink reference not valid.

  19. Ren G, Zhang Z, Zhu X, Men X, Liu W (2014) Influence of lubricant filling on the dry sliding wear behaviors of hybrid PTFE/Nomex fabric composite. J Mater Sci Lett 49:3716–3724. https://doi.org/10.1007/s10853-014-8081-y

    Article  Google Scholar 

  20. M. Yang, J. Yuan, X. Men, Z. Zhang, F. Guo, W. Liu, Effect of ZrB2 particles incorporation on high-temperature tribological properties of hybrid PTFE/Nomex fabric/phenolic composite, Tribol. Int. 99 (2016) 289–295. Error! Hyperlink reference not valid.

  21. W. Sun, Y. Gu, Z. Yang, M. Li, S. Wang, Z. Zhang, Enhanced tribological performance of hybrid polytetrafluoroethylene/Kevlar fabric composite filled with milled pitch-based carbon fibers, J. Appl. Polym. Sci. 135 (2018). https://doi.org/10.1002/app.46269

  22. Zhang HJ, Zhang ZZ, Guo F (2011) Studies of the influence of graphite and MoS2 on the tribological behaviors of hybrid PTFE/Nomex fabric composite. Tribol T 54:417–423. https://doi.org/10.1080/10402004.2011.553027

    Article  Google Scholar 

  23. Li H, Yin Z, Jiang D, Huo Y, Cui Y (2014) Tribological behavior of hybrid PTFE/Kevlar fabric composites with nano-Si3N4 and submicron size WS2 fillers. Tribol Int 80:172–178. https://doi.org/10.1016/j.triboint.2014.07.006

    Article  Google Scholar 

  24. Ren G, Zhang Z, Song Y, Li X, Yan J, Wang Y, Zhu X (2017) Effect of MWCNTs-GO hybrids on tribological performance of hybrid PTFE/Nomex fabric/phenolic composite. Compos Sci Technol 146:155–160. https://doi.org/10.1016/j.compscitech.2017.04.022

    Article  Google Scholar 

  25. Yuan J, Zhang Z, Yang M, Wu L, Li P, Guo F, Men X, Liu W (2019) Coupling hybrid of BN nanosheets and carbon nanotubes to enhance the mechanical and tribological properties of fabric composites. Compos Part A-Appl S 123:132–140. https://doi.org/10.1016/j.compositesa.2019.05.010

    Article  Google Scholar 

  26. Obradović V, Simić D, Zrilić M, Stojanović DB, Uskoković PS (2021) Novel hybrid nanostructures of carbon nanotube/fullerene-like tungsten disulfide as reinforcement for aramid fabric composites. Fiber Polym 22:528–539. https://doi.org/10.1007/s12221-021-0278-5

    Article  Google Scholar 

  27. Zhang ZZ, Zhang HJ, Guo F, Wang K, Jiang W (2009) Enhanced wear resistance of hybrid PTFE/Kevlar fabric/phenolic composite by cryogenic treatment. J Mater Sci Lett 44:6199–6205. https://doi.org/10.1007/s10853-009-3862-4

    Article  Google Scholar 

  28. Huang T, Lu R, Ma Y, Liu P, Chen H, Huang Z, Li T (2012) Surface modification by air-plasma treatment and its effect on the tribological behavior of hybrid fabric-polyphenylene sulfide composites. J Macromol Sci B 51:1011–1026. https://doi.org/10.1080/00222348.2011.625877

    Article  Google Scholar 

  29. Liu N, Wang J, Chen B, Han G, Yan F (2014) Enhancement on interlaminar shear strength and tribological properties in water of ultra high molecular weight polyethylene/glass fabric/phenolic laminate composite by surface modification of fillers. Mater Design 55:805–811. https://doi.org/10.1016/j.matdes.2013.10.053

    Article  Google Scholar 

  30. J. Yuan, Z. Zhang, M. Yang, F. Guo, X. Men, W. Liu, Surface modification of hybrid-fabric composites with amino silane and polydopamine for enhanced mechanical and tribological behaviors, Tribol. Int. 107 (2017) 10–17. Error! Hyperlink reference not valid.

  31. Qi X, Wang H, Dong Y, Fan B, Zhang W, Zhang Y, Ma J, Zhou Y (2019) Experimental analysis of the effects of laser surface texturing on tribological properties of PTFE/Kevlar fabric composite weave structures. Tribol Int 135:104–111. https://doi.org/10.1016/j.triboint.2019.02.036

    Article  Google Scholar 

  32. Yang M, Zhu X, Ren G, Men X, Guo F, Li P, Zhang Z (2015) Influence of air-plasma treatment and hexagonal boron nitride as filler on the high temperature tribological behaviors of hybrid PTFE/Nomex fabric/phenolic composite. Eur Polym J 67:143–151. https://doi.org/10.1016/j.eurpolymj.2015.03.027

    Article  Google Scholar 

  33. Wang J, Liu N, Yang J, Han G, Yan F (2016) Combined effect of chemical surface treatment of Kevlar fabric and PTFE fillers on the water-involved tribological performance of Kevlar fabric/phenolic laminate. Tribol T 59:385–390. https://doi.org/10.1080/10402004.2015.1087079

    Article  Google Scholar 

  34. Yuan J, Zhang Z, Yang M, Li P, Jiang W, Zhao X, Liu W (2021) Enhanced high-temperature tribological performance of PTFE/PI fabric composites by simultaneously introducing PDA/SiO2 hybrid coating and aramid product reinforcements. Polym Compos 42:3539–3549. https://doi.org/10.1002/pc.26077

    Article  Google Scholar 

  35. Wang H, Qi XW, Zhang WL, Dong Y, Fan BL, Zhang Y (2020) Tribological properties of PTFE/Kevlar fabric composites under heavy loading. Tribol Int 151:1–10. https://doi.org/10.1016/j.triboint.2020.106507

    Article  Google Scholar 

  36. Xue Y, Yan S, Xie J, Feng Z, Zou J (2019) Contact and tribological properties of self-lubricating ellipsoidal plain bearings. Tribol Int 140:1–10. https://doi.org/10.1016/j.triboint.2019.105840

    Article  Google Scholar 

  37. Yang M, Zhang Z, Yuan J, Wu L, Zhao X, Guo F, Men X, Liu W (2019) Fabrication of PTFE/Nomex fabric/phenolic composites using a layer-by-layer self-assembly method for tribology field application. Friction 8:335–342. https://doi.org/10.1007/s40544-019-0260-z

    Article  Google Scholar 

  38. Li P, Zhang Z, Yang M, Yuan J, Jiang W (2021) Synchronously improved thermal conductivity and tribological performance of self-lubricating fabric liner composites via integrated design method with copper yarn. Tribol Int 164:1–10. https://doi.org/10.1016/j.triboint.2021.107204

    Article  Google Scholar 

  39. Xue Y, Chen J, Guo S, Meng Q, Luo J (2018) Finite element simulation and experimental test of the wear behavior for self-lubricating spherical plain bearings. Friction 6:297–306. https://doi.org/10.1007/s40544-018-0206-x

    Article  Google Scholar 

  40. Luo L, Wang X, Liu H, Zhu L (2018) Number simulation analysis of self-lubricating joint bearing liner wear. Int J Interact Des M 13:23–34. https://doi.org/10.1007/s40544-018-0206-x

    Article  Google Scholar 

  41. W. Cui, K. Raza, Z. Zhao, C. Yu, L. Tao, W. Zhao, W. Chen, S. Peng, Q. Xu, L. Ma, Y. Hu, D. Liao, B. Liang, T. Wang, T. Ma, Role of transfer film formation on the tribological properties of polymeric composite materials and spherical plain bearing at low temperatures, Tribol. Int. 152 (2020). https://doi.org/10.1016/j.triboint.2020.106569

  42. Tan D, Li R, He Q, Yang X, Zhou C, Mo J (2021) Failure analysis of the joint bearing of the main rotor of the Robinson R44 helicopter: a case study. Wear 477:1–11. https://doi.org/10.1016/j.wear.2021.203862

    Article  Google Scholar 

  43. J. Woodhead, C.E. Truman, J.D. Booker, Modelling of dynamic friction in the cold forming of plain spherical bearings, Surface and Contact Mechanics including Tribology XII, 91 (2015) 141–152. https://doi.org/10.2495/SECM150131

  44. Xin LL (2018) Optimal design of the process for self-lubricating spherical plain bearings based on finite element analysis. IOP Conference Series: Materials Science and Engineering 452:1–9. https://doi.org/10.1088/1757-899X/452/2/022001

    Article  Google Scholar 

  45. Hu CL, Ou H, Zhao Z (2015) An alternative evaluation method for friction condition in cold forging by ring with boss compression test. J Mater Process Tech 224:18–25. https://doi.org/10.1016/j.jmatprotec.2015.04.010

    Article  Google Scholar 

  46. S.T. Button, Tribology in metal forming processes, in: Davim J. (Eds.) Tribology in manufacturing technology. Materials Forming, Machining and Tribology, Berlin, Heidelberg, 2012, pp. 103–120. https://doi.org/10.1007/978-3-642-31683-8_3

  47. Bay N, Azushima A, Groche P, Ishibashi I, Merklein M, Morishita M, Nakamura T, Schmid S, Yoshida M (2010) Environmentally benign tribo-systems for metal forming. CIRP Ann 59:760–780. https://doi.org/10.1016/j.cirp.2010.05.007

    Article  Google Scholar 

  48. Groche P, Kramer P, Bay N, Christiansen P, Dubar L, Hayakawa K, Hu C, Kitamura K, Moreau P (2018) Friction coefficients in cold forging: a global perspective. CIRP Ann 67:261–264. https://doi.org/10.1016/j.cirp.2018.04.106

    Article  Google Scholar 

  49. Kunogi M (1956) A new method of cold extrusion. J Sci Res Inst (Tokyo) 50:215–246

    Google Scholar 

  50. Male AT, Cockcroft MG (1964) A method for the determination of the coefficient of friction of metals under conditions of bulk plastic deformation. J Inst Metals 9:38–46. https://doi.org/10.1016/0043-1648(66)90161-X

    Article  Google Scholar 

  51. Kim H, Yoon JW, Chung K, Lee MG (2020) A multiplicative plastic hardening model in consideration of strain softening and strain rate: theoretical derivation and characterization of model parameters with simple tension and creep test. Int J Mech Sci 187:105913. https://doi.org/10.1016/j.ijmecsci.2020.105913

    Article  Google Scholar 

  52. Male AT, Depierre V (1971) The validity of mathematical solutions for determining friction from the ring compression test. Wear 17(3):389–397. https://doi.org/10.1016/0043-1648(71)90094-9

    Article  Google Scholar 

  53. F.L. Tobiason, Phenolic resin adhesives. in: Skeist I. (Eds.) Handbook of adhesives. Springer, Boston, USA, 1990. https://doi.org/10.1007/978-1-4613-0671-9_17

  54. Conley RT, Bieron F (1963) A study of the oxidative degradation of phenol-formaldehyde polycondensates using infrared spectroscopy. J Appl Polymer Sci 7:171–180. https://doi.org/10.1002/app.1963.070070110

    Article  Google Scholar 

  55. Sutter G, Ranc N (2010) Flash temperature measurement during dry friction process at high sliding speed. Wear 268:1237–1242. https://doi.org/10.1016/j.wear.2010.01.019

    Article  Google Scholar 

  56. Ren GN, Zhang ZZ, Zhu XT, Men XH, Jiang W, Liu WM (2014) Sliding wear behaviors of Nomex fabric/phenolic composite under dry and water-bathed sliding conditions. Friction 2:264–271. https://doi.org/10.1007/s40544-014-0046-2

    Article  Google Scholar 

  57. Nuruzzaman DM, Chowdhury MA (2012) Effect of normal load and sliding velocity on friction coefficient of aluminum sliding against different pin materials. Am J Sci 2:26–31. https://doi.org/10.5923/j.materials.20120201.05

    Article  Google Scholar 

  58. Johnson AF, Holzapfel M (2016) Influence of delamination on impact damage in composite structures. Compos Sci Technol 66:807–815. https://doi.org/10.1016/j.compscitech.2004.12.032

    Article  Google Scholar 

  59. de Borst R, Remmers JJC (2006) Computational modelling of delamination. Compos Sci Technol 66:713–722. https://doi.org/10.1016/j.compscitech.2004.12.025

    Article  Google Scholar 

  60. Wang SS, Yu TP (2004) Nonlinear mechanics of delamination in fiber-composite laminates: asymptotic solutions and computational results. Compos Sci Technol 66:776–784. https://doi.org/10.1016/j.compscitech.2004.12.020

    Article  Google Scholar 

  61. Friedrich K, Reinicke P (1998) Friction and wear of polymer-based composites. Mech Compos Mater 34:503–514. https://doi.org/10.1007/BF02254659

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 51475294).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengliang Hu.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, C., Zhuo, Y., Zhu, L. et al. Tribological behavior of PTFE/Nomex/phenolic composite lubricant under cold forming condition in the bearing assembly process. Int J Adv Manuf Technol 121, 6393–6406 (2022). https://doi.org/10.1007/s00170-022-09719-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-09719-7

Keywords

Navigation