Skip to main content
Log in

Laser powder bed fusion of the steels used in the plastic injection mould industry: a review of the influence of processing parameters on the final properties

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This review provides a critical overview of the influence of the laser powder bed fusion (LPBF) processing parameters on the final properties of the three steels used in the plastic injection mould industry (420 stainless steel, H13, and P20 steels). The main objective is to provide an engineering overview concerning the response of the parts made from the materials produced by this technique. A comprehensive summary of LPBF processing parameters and their influence on the physical, mechanical, tribological, corrosion, and thermal properties of the LPBFed parts is presented and discussed. An analysis of the suitability of these steels for the production of components for the plastic injection mould industry is also presented. This review shows that, despite the increase research about these steels over recent years, there are still some shortcomings and issues that require further investigation, such as the behaviour of LPBFed parts in-service conditions, their thermal behaviour, and the influence of the processing parameters and their surroundings on the final properties of the parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

All data used in this work have been properly cited within the article.

Code availability

Not applicable.

References

  1. Haghdadi N, Laleh M, Moyle M, Primig S (2021) Additive manufacturing of steels: a review of achievements and challenges. J Mater Sci 56:64–107. https://doi.org/10.1007/s10853-020-05109-0

    Article  Google Scholar 

  2. Khairallah SA, Anderson AT, Rubenchik A, King WE (2016) Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater 108:36–45. https://doi.org/10.1016/j.actamat.2016.02.014

    Article  Google Scholar 

  3. Herzog D, Seyda V, Wycisk E, Emmelmann C (2016) Additive manufacturing of metals. Acta Mater 117:371–392. https://doi.org/10.1016/j.actamat.2016.07.019

    Article  Google Scholar 

  4. Gu DD, Meiners W, Wissenbach K, Poprawe R (2012) Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev 57:133–164. https://doi.org/10.1179/1743280411Y.0000000014

    Article  Google Scholar 

  5. DebRoy T, Wei HL, Zuback JS et al (2018) Additive manufacturing of metallic components - process, structure and properties. Prog Mater Sci 92:112–224. https://doi.org/10.1016/j.pmatsci.2017.10.001

    Article  Google Scholar 

  6. Emmelmann C, Kranz J, Herzog D, Wycisk E (2013) Laser Additive Manufacturing of Metals. In: V. S, M. B (eds) Laser Technology in Biomimetics: Basics and Applications. Springer, Berlin, Heidelberg, pp 143–162

  7. Wang J, Liu S, Fang Y, He Z (2020) A short review on selective laser melting of H13 steel. Int J Adv Manuf Technol 108:2453–2466. https://doi.org/10.1007/s00170-020-05584-4

    Article  Google Scholar 

  8. Zhang LC, Attar H, Calin M, Eckert J (2016) Review on manufacture by selective laser melting and properties of titanium based materials for biomedical applications. Mater Technol 31:66–76. https://doi.org/10.1179/1753555715Y.0000000076

    Article  Google Scholar 

  9. Jiang J, Xu X, Stringer J (2018) Support structures for additive manufacturing: A review. J Manuf Mater Process. https://doi.org/10.3390/jmmp2040064

    Article  Google Scholar 

  10. Jiang J, Ma Y (2020) Path planning strategies to optimize accuracy, quality, build time and material use in additive manufacturing: a review. Micromachines. https://doi.org/10.3390/MI11070633

    Article  Google Scholar 

  11. Jiang J, Xiong Y, Zhang Z, Rosen DW (2022) Machine learning integrated design for additive manufacturing. J Intell Manuf 33:1073–1086. https://doi.org/10.1007/s10845-020-01715-6

    Article  Google Scholar 

  12. Busachi A, Erkoyuncu J, Colegrove P et al (2017) A review of additive manufacturing technology and cost estimation techniques for the defence sector. CIRP J Manuf Sci Technol 19:117–128. https://doi.org/10.1016/j.cirpj.2017.07.001

    Article  Google Scholar 

  13. Mazur M, Leary M, McMillan M et al (2016) SLM additive manufacture of H13 tool steel with conformal cooling and structural lattices. Rapid Prototyp J 22:504–518. https://doi.org/10.1108/RPJ-06-2014-0075

    Article  Google Scholar 

  14. Hosseini E, Popovich VA (2019) A review of mechanical properties of additively manufactured Inconel 718. Addit Manuf 30:100877. https://doi.org/10.1016/j.addma.2019.100877

    Article  Google Scholar 

  15. Yan JJ, Chen MT, Quach WM et al (2019) Mechanical properties and cross-sectional behavior of additively manufactured high strength steel tubular sections. Thin-Walled Struct 144:106158. https://doi.org/10.1016/j.tws.2019.04.050

    Article  Google Scholar 

  16. Bartolomeu F, Costa MM, Alves N et al (2020) Additive manufacturing of NiTi-Ti6Al4V multi-material cellular structures targeting orthopedic implants. Opt Lasers Eng 134:106208. https://doi.org/10.1016/j.optlaseng.2020.106208

    Article  Google Scholar 

  17. Singh R, Singh S (2017) Additive manufacturing: an overview. In: Reference Module in Materials Science and Materials Engineering, pp 1–12

  18. Frazier WE (2014) Metal additive manufacturing: A review. J Mater Eng Perform 23:1917–1928. https://doi.org/10.1007/s11665-014-0958-z

    Article  Google Scholar 

  19. Zhang J, Song B, Wei Q et al (2019) A review of selective laser melting of aluminum alloys: processing, microstructure, property and developing trends. J Mater Sci Technol 35:270–284. https://doi.org/10.1016/j.jmst.2018.09.004

    Article  Google Scholar 

  20. Yap CY, Chua CK, Dong ZL et al (2015) Review of selective laser melting: Materials and applications. Appl Phys Rev. https://doi.org/10.1063/1.4935926

    Article  Google Scholar 

  21. Aboulkhair NT, Simonelli M, Parry L et al (2019) 3D printing of aluminium alloys: additive manufacturing of aluminium alloys using selective laser melting. Prog Mater Sci 106:100578. https://doi.org/10.1016/j.pmatsci.2019.100578

    Article  Google Scholar 

  22. Bartolomeu F, Faria S, Carvalho O et al (2016) Predictive models for physical and mechanical properties of Ti6Al4V produced by Selective Laser Melting. Mater Sci Eng A 663:181–192. https://doi.org/10.1016/j.msea.2016.03.113

    Article  Google Scholar 

  23. Liu Y, Yang Y, Mai S et al (2015) Investigation into spatter behavior during selective laser melting of AISI 316L stainless steel powder. Mater Des 87:797–806. https://doi.org/10.1016/j.matdes.2015.08.086

    Article  Google Scholar 

  24. Prashanth KG (2020) Selective laser melting: Materials and applications. J Manuf Mater Process 4:15–17. https://doi.org/10.3390/jmmp4010013

    Article  Google Scholar 

  25. Song X, Zhai W, Huang R et al (2021) Metal-Based 3D-Printed micro parts & structures. In: Encyclopedia of Materials: Metals and Alloys. pp 448–461

  26. Miranda G, Faria S, Bartolomeu F et al (2016) Predictive models for physical and mechanical properties of 316L stainless steel produced by selective laser melting. Mater Sci Eng A 657:43–56. https://doi.org/10.1016/j.msea.2016.01.028

    Article  Google Scholar 

  27. Ali MAM, Idayu N, Abduallah Z et al (2017) Interchangeable core and cavity plates for two-plate family injection mould. J Mech Eng Sci 11:2815–2824. https://doi.org/10.15282/jmes.11.3.2017.4.0255

    Article  Google Scholar 

  28. Raus AA, Wahab MS, Ibrahim MHI et al (2017) A comparative study of mould base tool materials in plastic injection moulding to improve cycle time and warpage using statistical method. J Mech Eng SI 4:1–17

    Google Scholar 

  29. Kitayama S, Yokoyama M, Takano M, Aiba S (2017) Multi-objective optimization of variable packing pressure profile and process parameters in plastic injection molding for minimizing warpage and cycle time. Int J Adv Manuf Technol 92:3991–3999. https://doi.org/10.1007/s00170-017-0456-1

    Article  Google Scholar 

  30. Alkaabneh FA, Barghash M, Mishael I (2013) A combined analytical hierarchical process (AHP) and Taguchi experimental design (TED) for plastic injection molding process settings. Int J Adv Manuf Technol 66:679–694. https://doi.org/10.1007/s00170-012-4357-z

    Article  Google Scholar 

  31. Zabala B, Fernandez X, Rodriguez JC et al (2019) Mechanism-based wear models for plastic injection moulds. Wear 440–441:203105. https://doi.org/10.1016/j.wear.2019.203105

    Article  Google Scholar 

  32. Low MLH, Lee KS (2003) A parametric-controlled cavity layout design system for a plastic injection mould. Int J Adv Manuf Technol 21:807–819. https://doi.org/10.1007/s00170-002-1397-9

    Article  Google Scholar 

  33. Öztürk O, Onmuş O, Williamson DL (2005) Microstructural, mechanical, and corrosion characterization of plasma-nitrided plastic injection mould steel. Surf Coat Technol 196:341–348. https://doi.org/10.1016/j.surfcoat.2004.08.154

    Article  Google Scholar 

  34. Dang X-P, Park H-S (2011) Design of U-shape milled groove conformal cooling channels for plastic injection mold. Int J Precis Eng Manuf 12:73–84. https://doi.org/10.1007/s12541-011-0009-8

    Article  Google Scholar 

  35. Park H-S, Dang X-P (2017) Development of a smart plastic injection mold with conformal cooling channels. Procedia Manuf 10:48–59. https://doi.org/10.1016/j.promfg.2017.07.020

    Article  Google Scholar 

  36. Jahan SA, El-mounayri H (2018) A thermomechanical analysis of conformal cooling channels in 3D printed plastic injection molds. Appl Sci 8:2567. https://doi.org/10.3390/app8122567

    Article  Google Scholar 

  37. Dimla DE, Camilotto M, Miani F (2005) Design and optimisation of conformal cooling channels in injection moulding tools. J Mater Process Technol 164–165:1294–1300. https://doi.org/10.1016/j.jmatprotec.2005.02.162

    Article  Google Scholar 

  38. Au KM, Yu KM (2007) A scaffolding architecture for conformal cooling design in rapid plastic injection moulding. Int J Adv Manuf Technol 34:496–515. https://doi.org/10.1007/s00170-006-0628-x

    Article  Google Scholar 

  39. Phull GS, Kumar S, Walia RS (2018) Conformal cooling for molds produced by additive manufacturing: a review. Int J Mech Eng Technol 9:1162–1172

    Google Scholar 

  40. Jahan SA, El-Mounayri H (2016) Optimal conformal cooling channels in 3D printed dies for plastic injection molding. Procedia Manuf 5:888–900. https://doi.org/10.1016/j.promfg.2016.08.076

    Article  Google Scholar 

  41. Saifullah ABM, Masood SH, Nikzad M (2016) an investigation on fabrication of conformal cooling channel with direct metal deposition for injection moulding. Elsevier Ltd

  42. Jahan S, Wu T, Shin Y et al (2019) Thermo-fluid topology optimization and experimental study of conformal cooling channels for 3D printed plastic injection molds. Procedia Manuf 34:631–639. https://doi.org/10.1016/j.promfg.2019.06.120

    Article  Google Scholar 

  43. El KMF, Rennie AEW, Ghazy M (2019) Tool life performance of injection mould tooling fabricated by selective laser melting for high-volume production. Materials (Basel) 12:1–23. https://doi.org/10.3390/ma12233910

    Article  Google Scholar 

  44. Jahan SA, Wu T, Zhang Y et al (2017) Thermo-mechanical design optimization of conformal cooling channels using design of experiments approach. Procedia Manuf 10:898–911. https://doi.org/10.1016/j.promfg.2017.07.078

    Article  Google Scholar 

  45. Papageorgiou D, Medrea C, Kyriakou N (2013) Failure analysis of H13 working die used in plastic injection moulding. Eng Fail Anal 35:355–359. https://doi.org/10.1016/j.engfailanal.2013.02.028

    Article  Google Scholar 

  46. Mendible G, Rulander J, Johnston S (2017) Comparative study of rapid and conventional tooling for plastics injection molding. Rapid Prototyp J 23:344–352. https://doi.org/10.1108/RPJ-01-2016-0013

    Article  Google Scholar 

  47. Martínez-Mateo I, Carrión-Vilches FJ, Sanes J, Bermúdez MD (2011) Surface damage of mold steel and its influence on surface roughness of injection molded plastic parts. Wear 271:2512–2516. https://doi.org/10.1016/j.wear.2010.11.054

    Article  Google Scholar 

  48. Firrao D, Matteis P, Spena PR, Gerosa R (2013) Influence of the microstructure on fatigue and fracture toughness properties of large heat-treated mold steels. Mater Sci Eng A 559:371–383. https://doi.org/10.1016/j.msea.2012.08.113

    Article  Google Scholar 

  49. Menges G, Michaeli W, Mohren P (2001) How to make injection molds, 3rd edn. Carl Hanser Verlag GmbH & Co, KG

    Book  Google Scholar 

  50. Yadroitsev I, Krakhmalev P, Yadroitsava I (2015) Hierarchical design principles of selective laser melting for high quality metallic objects. Addit Manuf 7:45–56. https://doi.org/10.1016/j.addma.2014.12.007

    Article  Google Scholar 

  51. Rosato DV, Rosato MG, Rosato DV (2000) Injection Molding Handbook. Kluwer Academic Publisher

  52. Mennig G, Stoeckhert K (2013) Mold-Making Handbook, 3rd edn. Hanser Publishers, Munich

    Book  Google Scholar 

  53. Zhao X, Wei Q, Song B et al (2015) Fabrication and characterization of AISI 420 stainless steel using selective laser melting. Mater Manuf Process 30:1283–1289. https://doi.org/10.1080/10426914.2015.1026351

    Article  Google Scholar 

  54. Li S, Liu Y, Tian Z et al (2020) Biomimetic superhydrophobic and antibacterial stainless-steel mesh via double-potentiostatic electrodeposition and modification. Surf Coatings Technol 403:126355. https://doi.org/10.1016/j.surfcoat.2020.126355

    Article  Google Scholar 

  55. Nachum S, Fleck NA (2011) The microstructure and mechanical properties of ball-milled stainless steel powder: the effect of hot-pressing vs. laser sintering. Acta Mater 59:7300–7310. https://doi.org/10.1016/j.actamat.2011.08.004

    Article  Google Scholar 

  56. Todorov T, Todorov G, Romanov B (2019) Design and simulation of mould tools with multi-material structure for plastic injection moulding based on additive technology. In: 2019 International Conference on Creative Business for Smart and Sustainable Growth (CREBUS). IEEE, pp 1–6

  57. Mazur M, Brincat P, Leary M, Brandt M (2017) Numerical and experimental evaluation of a conformally cooled H13 steel injection mould manufactured with selective laser melting. Int J Adv Manuf Technol 93:881–900. https://doi.org/10.1007/s00170-017-0426-7

    Article  Google Scholar 

  58. Chen J, Conlon K, Xue L, Rogge R (2010) Experimental study of residual stresses in laser clad AISI P20 tool steel on pre-hardened wrought P20 substrate. Mater Sci Eng A 527:7265–7273. https://doi.org/10.1016/j.msea.2010.07.098

    Article  Google Scholar 

  59. Kapil S, Legesse F, Negi S et al (2020) Hybrid layered manufacturing of a bimetallic injection mold of P20 tool steel and mild steel with conformal cooling channels. Prog Addit Manuf. https://doi.org/10.1007/s40964-020-00129-3

    Article  Google Scholar 

  60. Ding D, Pan Z, Cuiuri D, Li H (2015) Wire-feed additive manufacturing of metal components: technologies, developments and future interests. Int J Adv Manuf Technol 81:465–481. https://doi.org/10.1007/s00170-015-7077-3

    Article  Google Scholar 

  61. Song B, Zhao X, Li S et al (2015) Differences in microstructure and properties between selective laser melting and traditional manufacturing for fabrication of metal parts: A review. Front Mech Eng 10:111–125. https://doi.org/10.1007/s11465-015-0341-2

    Article  Google Scholar 

  62. Leitz K, Singer P, Plankensteiner A et al (2017) Multi-physical simulation of selective laser melting. Met Powder Rep 72:331–338. https://doi.org/10.1016/j.mprp.2016.04.004

    Article  Google Scholar 

  63. Vock S, Klöden B, Kirchner A et al (2019) Powders for powder bed fusion: a review. Prog Addit Manuf 4:383–397. https://doi.org/10.1007/s40964-019-00078-6

    Article  Google Scholar 

  64. Telasang G, Dutta Majumdar J, Padmanabham G et al (2014) Effect of laser parameters on microstructure and hardness of laser clad and tempered AISI H13 tool steel. Surf Coatings Technol 258:1108–1118. https://doi.org/10.1016/j.surfcoat.2014.07.023

    Article  Google Scholar 

  65. Zhou X, Liu X, Zhang D et al (2015) Balling phenomena in selective laser melted tungsten. J Mater Process Technol 222:33–42. https://doi.org/10.1016/j.jmatprotec.2015.02.032

    Article  Google Scholar 

  66. Narvan M, Al-Rubaie KS, Elbestawi M (2019) Process-structure-property relationships of AISI H13 tool steel processed with selective laser melting. Materials (Basel) 12:1–20. https://doi.org/10.3390/ma12142284

    Article  Google Scholar 

  67. Carlton HD, Haboub A, Gallegos GF et al (2016) Damage evolution and failure mechanisms in additively manufactured stainless steel. Mater Sci Eng A 651:406–414. https://doi.org/10.1016/j.msea.2015.10.073

    Article  Google Scholar 

  68. Lee J, Choe J, Park J et al (2019) Microstructural effects on the tensile and fracture behavior of selective laser melted H13 tool steel under varying conditions. Mater Charact 155:109817. https://doi.org/10.1016/j.matchar.2019.109817

    Article  Google Scholar 

  69. Katancik M, Mirzababaei S, Ghayoor M, Pasebani S (2020) Selective laser melting and tempering of H13 tool steel for rapid tooling applications. J Alloys Compd 849:156319. https://doi.org/10.1016/j.jallcom.2020.156319

    Article  Google Scholar 

  70. Pauzon C, Hryha E, Forêt P, Nyborg L (2019) Effect of argon and nitrogen atmospheres on the properties of stainless steel 316 L parts produced by laser-powder bed fusion. Mater Des. https://doi.org/10.1016/j.matdes.2019.107873

    Article  Google Scholar 

  71. Gokuldoss PK, Kolla S, Eckert J (2017) Additive manufacturing processes: Selective laser melting, electron beam melting and binder jetting-selection guidelines. Materials (Basel). https://doi.org/10.3390/ma10060672

    Article  Google Scholar 

  72. Sander J, Hufenbach J, Giebeler L et al (2016) Microstructure and properties of FeCrMoVC tool steel produced by selective laser melting. Mater Des 89:335–341. https://doi.org/10.1016/j.matdes.2015.09.148

    Article  Google Scholar 

  73. Kempen K, Vrancken B, Buls S et al (2014) Selective laser melting of crack-free high density M2 high speed steel parts by baseplate preheating. J Manuf Sci Eng Trans ASME 136:1–7. https://doi.org/10.1115/1.4028513

    Article  Google Scholar 

  74. Tomas J, Hitzler L, Köller M et al (2020) The dimensional accuracy of thin-walled parts manufactured by laser-powder bed fusion process. J Manuf Mater Process 4:12. https://doi.org/10.3390/JMMP4030091

    Article  Google Scholar 

  75. Gu D, Guo M, Zhang H et al (2020) Effects of laser scanning strategies on selective laser melting of pure tungsten. Int J Extrem Manuf. https://doi.org/10.1088/2631-7990/ab7b00

    Article  Google Scholar 

  76. Jia H, Sun H, Wang H et al (2021) Scanning strategy in selective laser melting (SLM): a review. Int J Adv Manuf Technol 113:2413–2435. https://doi.org/10.1007/s00170-021-06810-3

    Article  Google Scholar 

  77. Zhang W, Tong M, Harrison NM (2020) Scanning strategies effect on temperature, residual stress and deformation by multi-laser beam powder bed fusion manufacturing. Addit Manuf 36:101507. https://doi.org/10.1016/j.addma.2020.101507

    Article  Google Scholar 

  78. Robinson J, Ashton I, Fox P et al (2018) Determination of the effect of scan strategy on residual stress in laser powder bed fusion additive manufacturing. Addit Manuf 23:13–24. https://doi.org/10.1016/j.addma.2018.07.001

    Article  Google Scholar 

  79. Thijs L, Verhaeghe F, Craeghs T et al (2010) A study of the microstructural evolution during selective laser melting of Ti-6Al-4V. Acta Mater 58:3303–3312. https://doi.org/10.1016/j.actamat.2010.02.004

    Article  Google Scholar 

  80. Masoomi M, Thompson SM, Shamsaei N (2017) Laser powder bed fusion of Ti-6Al-4V parts: thermal modeling and mechanical implications. Int J Mach Tools Manuf 118–119:73–90. https://doi.org/10.1016/j.ijmachtools.2017.04.007

    Article  Google Scholar 

  81. Valente EH, Gundlach C, Christiansen TL, Somers MAJ (2019) Effect of scanning strategy during selective laser melting on surface topography, porosity, and microstructure of additively manufactured Ti-6Al-4V. Appl Sci. https://doi.org/10.3390/app9245554

    Article  Google Scholar 

  82. Jhabvala J, Boillat E, Antignac T, Glardon R (2010) On the effect of scanning strategies in the selective laser melting process. Virtual Phys Prototyp 5:99–109. https://doi.org/10.1080/17452751003688368

    Article  Google Scholar 

  83. Sames WJ, List FA, Pannala S et al (2016) The metallurgy and processing science of metal additive manufacturing. Int Mater Rev 61:315–360. https://doi.org/10.1080/09506608.2015.1116649

    Article  Google Scholar 

  84. Yang XH, Jiang CM, Ho JR et al (2021) Effects of laser spot size on the mechanical properties of AISI 420 stainless steel fabricated by selective laser melting. Materials (Basel). https://doi.org/10.3390/ma14164593

    Article  Google Scholar 

  85. Tian Y, Chadha K, Aranas C (2021) Laser powder bed fusion of ultra-high-strength 420 stainless steel: Microstructure characterization, texture evolution and mechanical properties. Mater Sci Eng A 805:140790. https://doi.org/10.1016/j.msea.2021.140790

    Article  Google Scholar 

  86. Nath SD, Okello A, Kelkar R et al (2021) Adapting L-PBF process for fine powders: a case study in 420 stainless steel. Mater Manuf Process 1–12. https://doi.org/10.1080/10426914.2021.1885707

    Article  Google Scholar 

  87. Shen LC, Yang XH, Ho JR et al (2020) Effects of build direction on the mechanical properties of a martensitic stainless steel fabricated by selective laser melting. Materials (Basel) 13:1–18. https://doi.org/10.3390/ma13225142

    Article  Google Scholar 

  88. Shi Y, Xiong X, Liu Z et al (2020) Mechanical property evaluation of a slmed martensitic stainless steel. Acta Metall Sin 33:1466–1476. https://doi.org/10.1007/s40195-020-01128-7

    Article  Google Scholar 

  89. Nath SD, Gupta G, Kearns M et al (2020) Effects of layer thickness in laser-powder bed fusion of 420 stainless steel. Rapid Prototyp J 26:1197–1208. https://doi.org/10.1108/RPJ-10-2019-0279

    Article  Google Scholar 

  90. Saeidi K, Zapata DL, Lofaj F et al (2019) Ultra-high strength martensitic 420 stainless steel with high ductility. Addit Manuf 29:100803. https://doi.org/10.1016/j.addma.2019.100803

    Article  Google Scholar 

  91. Nath SD, Irrinki H, Gupta G et al (2019) Microstructure-property relationships of 420 stainless steel fabricated by laser-powder bed fusion. Powder Technol 343:738–746. https://doi.org/10.1016/j.powtec.2018.11.075

    Article  Google Scholar 

  92. Momenzadeh N, Nath SD, Berfield TA, Atre SV (2019) In Situ Measurement of Thermal Strain Development in 420 Stainless Steel Additive Manufactured Metals. Exp Mech 59:819–827. https://doi.org/10.1007/s11340-019-00513-3

    Article  Google Scholar 

  93. Nath SD, Clinning E, Gupta G et al (2019) Effects of Nb and Mo on the microstructure and properties of 420 stainless steel processed by laser-powder bed fusion. Addit Manuf 28:682–691. https://doi.org/10.1016/j.addma.2019.06.016

    Article  Google Scholar 

  94. Krakhmalev P, Yadroitsava I, Fredriksson G, Yadroitsev I (2015) In situ heat treatment in selective laser melted martensitic AISI 420 stainless steels. Mater Des 87:380–385. https://doi.org/10.1016/j.matdes.2015.08.045

    Article  Google Scholar 

  95. Wang M, Wu Y, Wei Q, Shi Y (2020) Thermal fatigue properties of H13 hot-work tool steels processed by selective laser melting. Metals (Basel) 10:1–17. https://doi.org/10.3390/met10010116

    Article  Google Scholar 

  96. Ren B, Lu D, Zhou R et al (2019) Preparation and mechanical properties of selective laser melted H13 steel. J Mater Res 34:1415–1425. https://doi.org/10.1557/jmr.2019.10

    Article  Google Scholar 

  97. Deirmina F, Peghini N, AlMangour B et al (2019) Heat treatment and properties of a hot work tool steel fabricated by additive manufacturing. Mater Sci Eng A 753:109–121. https://doi.org/10.1016/j.msea.2019.03.027

    Article  Google Scholar 

  98. Wang M, Li W, Wu Y et al (2019) High-temperature properties and microstructural stability of the AISI H13 hot-work tool steel processed by selective laser melting. Metall Mater Trans B Process Metall Mater Process Sci 50:531–542. https://doi.org/10.1007/s11663-018-1442-1

    Article  Google Scholar 

  99. Jung ID, Choe J, Yun J et al (2019) Dual speed laser re-melting for high densification in H13 tool steel metal 3D printing. Arch Metall Mater 64:571–578. https://doi.org/10.24425/amm.2019.127580

    Article  Google Scholar 

  100. Deirmina F, AlMangour B, Grzesiak D, Pellizzari M (2018) H13–partially stabilized zirconia nanocomposites fabricated by high-energy mechanical milling and selective laser melting. Mater Des 146:286–297. https://doi.org/10.1016/j.matdes.2018.03.017

    Article  Google Scholar 

  101. Ackermann M, Šafka J, Voleský L et al (2018) Impact testing of H13 tool steel processed with use of selective laser melting technology. Mater Sci Forum 919:43–51. https://doi.org/10.4028/www.scientific.net/MSF.919.43

    Article  Google Scholar 

  102. Yan JJ, Zheng DL, Li HX et al (2017) Selective laser melting of H13: microstructure and residual stress. J Mater Sci 52:12476–12485. https://doi.org/10.1007/s10853-017-1380-3

    Article  Google Scholar 

  103. AlMangour B, Grzesiak D, Yang JM (2016) Nanocrystalline TiC-reinforced H13 steel matrix nanocomposites fabricated by selective laser melting. Mater Des 96:150–161. https://doi.org/10.1016/j.matdes.2016.02.022

    Article  Google Scholar 

  104. Narvan M, Ghasemi A, Fereiduni E et al (2021) Part deflection and residual stresses in laser powder bed fusion of H13 tool steel. Mater Des 204:109659. https://doi.org/10.1016/j.matdes.2021.109659

    Article  Google Scholar 

  105. Kunz J, Herzog S, Kaletsch A, Broeckmann C (2021) Influence of initial defect density on mechanical properties of AISI H13 hot-work tool steel produced by laser powder bed fusion and hot isostatic pressing. Powder Metall. https://doi.org/10.1080/00325899.2021.1934634

    Article  Google Scholar 

  106. Yonehara M, Ikeshoji TT, Nagahama T et al (2020) Parameter optimization of the high-power laser powder bed fusion process for H13 tool steel. Int J Adv Manuf Technol 110:427–437. https://doi.org/10.1007/s00170-020-05879-6

    Article  Google Scholar 

  107. Pellizzari M, AlMangour B, Benedetti M et al (2020) Effects of building direction and defect sensitivity on the fatigue behavior of additively manufactured H13 tool steel. Theor Appl Fract Mech 108:102634. https://doi.org/10.1016/j.tafmec.2020.102634

    Article  Google Scholar 

  108. Dzukey GA, Yang K, Wang Q et al (2020) Porosity, hardness, friction and wear performance analysis of H13 SLM-formed samples. J Mater Eng Perform 29:4957–4966. https://doi.org/10.1007/s11665-020-04999-0

    Article  Google Scholar 

  109. Fonseca EB, Gabriel AHG, Araújo LC et al (2020) Assessment of laser power and scan speed influence on microstructural features and consolidation of AISI H13 tool steel processed by additive manufacturing. Addit Manuf 34:101250. https://doi.org/10.1016/j.addma.2020.101250

    Article  Google Scholar 

  110. Pellizzari M, Furlani S, Deirmina F et al (2020) Fracture toughness of a hot work tool steel fabricated by laser-powder bed fusion additive manufacturing. Steel Res Int 91:1–7. https://doi.org/10.1002/srin.201900449

    Article  Google Scholar 

  111. Zhao M, Duan C, Luo X (2020) Metallurgical defect behavior, microstructure evolution, and underlying thermal mechanisms of metallic parts fabricated by selective laser melting additive manufacturing. J Laser Appl 32:022012. https://doi.org/10.2351/1.5141074

    Article  Google Scholar 

  112. Yan J, Song H, Dong Y et al (2020) High strength (~2000 MPa) or highly ductile (~11%) additively manufactured H13 by tempering at different conditions. Mater Sci Eng A 773:138845. https://doi.org/10.1016/j.msea.2019.138845

    Article  Google Scholar 

  113. Garcias JF, Martins RF, Branco R et al (2021) Quasistatic and fatigue behavior of an AISI H13 steel obtained by additive manufacturing and conventional method. Fatigue Fract Eng Mater Struct 1–15. https://doi.org/10.1111/ffe.13565

    Article  Google Scholar 

  114. Åsberg M, Fredriksson G, Hatami S et al (2019) Influence of post treatment on microstructure, porosity and mechanical properties of additive manufactured H13 tool steel. Mater Sci Eng A 742:584–589. https://doi.org/10.1016/j.msea.2018.08.046

    Article  Google Scholar 

  115. Yan J, Zhou Y, Gu R et al (2019) A comprehensive study of steel powders (316L, H13, P20 and 18Ni300) for their selective laser melting additive manufacturing. Metals (Basel). https://doi.org/10.3390/met9010086

    Article  Google Scholar 

  116. Körperich JP, Merkel M (2018) Thermographic analysis of the building height impact on the properties of tool steel in selective laser beam melting. Materwiss Werksttech 49:689–695. https://doi.org/10.1002/mawe.201800010

    Article  Google Scholar 

  117. Krell J, Röttger A, Geenen K, Theisen W (2018) General investigations on processing tool steel X40CrMoV5-1 with selective laser melting. J Mater Process Technol 255:679–688. https://doi.org/10.1016/j.jmatprotec.2018.01.012

    Article  Google Scholar 

  118. Džugan J, Halmešová K, Ackermann M et al (2020) Thermo-physical properties investigation in relation to deposition orientation for SLM deposited H13 steel. Thermochim Acta 683:178479. https://doi.org/10.1016/j.tca.2019.178479

    Article  Google Scholar 

  119. Nguyen VL, Kim EA, Lee SR et al (2018) Evaluation of Thermo-mechaate sensitivity of selective laser melted H13 tool steel using nanoindentation tests. Metals (Basel). https://doi.org/10.3390/met8080589

    Article  Google Scholar 

  120. Lin Z, Zhang X, Ma F et al (2019) A research on the surface morphology, microstructure evolution and wear property of selective laser melting Al2O3/P20 composites. Mater Res Express 6:1265h3. https://doi.org/10.1088/2053-1591/ab691e

  121. Li HX, Qi HL, Song CH et al (2018) Selective laser melting of P20 mould steel: investigation on the resultant microstructure, high-temperature hardness and corrosion resistance. Powder Metall 61:21–27. https://doi.org/10.1080/00325899.2017.1368965

    Article  Google Scholar 

  122. Larimian T, Kannan M, Grzesiak D et al (2020) Effect of energy density and scanning strategy on densification, microstructure and mechanical properties of 316L stainless steel processed via selective laser melting. Mater Sci Eng A 770:138455. https://doi.org/10.1016/j.msea.2019.138455

    Article  Google Scholar 

  123. Montero-Sistiaga ML, Godino-Martinez M, Boschmans K et al (2018) Microstructure evolution of 316L produced by HP-SLM (high power selective laser melting). Addit Manuf 23:402–410. https://doi.org/10.1016/j.addma.2018.08.028

    Article  Google Scholar 

  124. Sadali MF, Hassan MZ, Ahmad F et al (2020) Influence of selective laser melting scanning speed parameter on the surface morphology, surface roughness, and micropores for manufactured Ti6Al4V parts. J Mater Res 35:2025–2035. https://doi.org/10.1557/jmr.2020.84

    Article  Google Scholar 

  125. Dadbakhsh S, Hao L (2012) Effect of hot isostatic pressing (HIP) on Al composite parts made from laser consolidated Al/Fe 2O 3 powder mixtures. J Mater Process Technol 212:2474–2483. https://doi.org/10.1016/j.jmatprotec.2012.06.016

    Article  Google Scholar 

  126. Simchi A, Asgharzadeh H (2004) Densification and microstructural evaluation during laser sintering of M2 high speed steel powder. Mater Sci Technol 20:1462–1468. https://doi.org/10.1179/026708304X3944

    Article  Google Scholar 

  127. AlMangour B, Grzesiak D, Yang JM (2017) Selective laser melting of TiB2/H13 steel nanocomposites: influence of hot isostatic pressing post-treatment. J Mater Process Technol 244:344–353. https://doi.org/10.1016/j.jmatprotec.2017.01.019

    Article  Google Scholar 

  128. Sun S, Brandt M, Easton M (2017) Powder bed fusion processes: an overview. In: Laser Additive Manufacturing: Materials, Design, Technologies, and Applications. pp 55–77

  129. Hooper PA (2018) Melt pool temperature and cooling rates in laser powder bed fusion. Addit Manuf 22:548–559. https://doi.org/10.1016/j.addma.2018.05.032

    Article  Google Scholar 

  130. Chen H, Gu D, Dai D et al (2017) Microstructure and composition homogeneity, tensile property, and underlying thermal physical mechanism of selective laser melting tool steel parts. Mater Sci Eng A 682:279–289. https://doi.org/10.1016/j.msea.2016.11.047

    Article  Google Scholar 

  131. Law WK, Wong KC, Wang H et al (2021) Microstructure evolution in additively manufactured steel molds: a review. J Mater Eng Perform 30:6389–6405. https://doi.org/10.1007/s11665-021-05948-1

    Article  Google Scholar 

  132. Brooks JW, Loretto MH, Smallman RE (1979) Direct observations of martensite nuclei in stainless steel. Acta Metall 27:1839–1847. https://doi.org/10.1016/0001-6160(79)90074-9

    Article  Google Scholar 

  133. Reggiani B, Todaro I (2019) Investigation on the design of a novel selective laser melted insert for extrusion dies with conformal cooling channels. Int J Adv Manuf Technol 104:815–830. https://doi.org/10.1007/s00170-019-03879-9

    Article  Google Scholar 

  134. Froend M, Ventzke V, Dorn F et al (2020) Microstructure by design: an approach of grain refinement and isotropy improvement in multi-layer wire-based laser metal deposition. Mater Sci Eng A 772:138635. https://doi.org/10.1016/j.msea.2019.138635

    Article  Google Scholar 

  135. Chen H, Gu D, Dai D et al (2018) A novel approach to direct preparation of complete lath martensite microstructure in tool steel by selective laser melting. Mater Lett 227:128–131. https://doi.org/10.1016/j.matlet.2018.05.042

    Article  Google Scholar 

  136. Kurzynowski T, Stopyra W, Gruber K et al (2019) Effect of scanning and support strategies on relative density of SLM-ed H13 steel in relation to specimen size. Materials (Basel). https://doi.org/10.3390/ma12020239

    Article  Google Scholar 

  137. Gu D, Shen Y (2009) Balling phenomena in direct laser sintering of stainless steel powder: metallurgical mechanisms and control methods. Mater Des 30:2903–2910. https://doi.org/10.1016/j.matdes.2009.01.013

    Article  Google Scholar 

  138. Kruth JP, Froyen L, Van Vaerenbergh J et al (2004) Selective laser melting of iron-based powder. J Mater Process Technol 149:616–622. https://doi.org/10.1016/j.jmatprotec.2003.11.051

    Article  Google Scholar 

  139. Qiu C, Panwisawas C, Ward M et al (2015) On the role of melt flow into the surface structure and porosity development during selective laser melting. Acta Mater 96:72–79. https://doi.org/10.1016/j.actamat.2015.06.004

    Article  Google Scholar 

  140. Simoni F, Huxol A, Villmer FJ (2021) Improving surface quality in selective laser melting based tool making. J Intell Manuf. https://doi.org/10.1007/s10845-021-01744-9

    Article  Google Scholar 

  141. Leary M (2017) Surface roughness optimisation for selective laser melting (SLM): accommodating relevant and irrelevant surfaces. In: Brandt M (ed) Laser Additive Manufacturing: Materials, Design, Technologies, and Applications Materials, Design, Technologies, and Applications. Woodhead Publishing Series in Electronic and Optical Materials, pp 99–118

  142. Agarwala M, Bourell D, Beaman J et al (1995) Direct selective laser sintering of metals. Rapid Prototyp J 1:26–36. https://doi.org/10.1108/13552549510078113

    Article  Google Scholar 

  143. Wang L-Z, Wang S, Wu J-J (2017) Experimental investigation on densification behavior and surface roughness of AlSi10Mg powders produced by selective laser melting. Opt Laser Technol 96:88–96. https://doi.org/10.1016/j.optlastec.2017.05.006

    Article  Google Scholar 

  144. Ali H, Ghadbeigi H, Mumtaz K (2018) Effect of scanning strategies on residual stress and mechanical properties of selective laser melted Ti6Al4V. Mater Sci Eng A 712:175–187. https://doi.org/10.1016/j.msea.2017.11.103

    Article  Google Scholar 

  145. Sealy MP, Hadidi H, Sotelo LD et al (2020) Compressive behavior of 420 stainless steel after asynchronous laser processing. CIRP Ann 69:169–172. https://doi.org/10.1016/j.cirp.2020.04.059

    Article  Google Scholar 

  146. Brnic J, Turkalj G, Canadija M et al (2011) Martensitic stainless steel AISI 420 - mechanical properties, creep and fracture toughness. Mech Time-Dependent Mater 15:341–352. https://doi.org/10.1007/s11043-011-9137-x

    Article  Google Scholar 

  147. Yan H, Bi H, Li X, Xu Z (2009) Precipitation and mechanical properties of Nb-modified ferritic stainless steel during isothermal aging. Mater Charact 60:204–209. https://doi.org/10.1016/j.matchar.2008.09.001

    Article  Google Scholar 

  148. Sarkar S, Kumar CS, Nath AK (2019) Effects of different surface modifications on the fatigue life of selective laser melted 15–5 PH stainless steel. Mater Sci Eng A 762:138109. https://doi.org/10.1016/j.msea.2019.138109

    Article  Google Scholar 

  149. Spierings AB, Starr TL, Wegener K (2013) Fatigue performance of additive manufactured metallic parts. Rapid Prototyp J 19:88–94. https://doi.org/10.1108/13552541311302932

    Article  Google Scholar 

  150. Dörfert R, Zhang J, Clausen B et al (2019) Comparison of the fatigue strength between additively and conventionally fabricated tool steel 1.2344. Addit Manuf 27:217–223. https://doi.org/10.1016/j.addma.2019.01.010

    Article  Google Scholar 

  151. Melia MA, Nguyen HDA, Rodelas JM, Schindelholz EJ (2019) Corrosion properties of 304L stainless steel made by directed energy deposition additive manufacturing. Corros Sci 152:20–30. https://doi.org/10.1016/j.corsci.2019.02.029

    Article  Google Scholar 

  152. Schaller RF, Mishra A, Rodelas JM et al (2018) The Role of Microstructure and Surface Finish on the Corrosion of Selective Laser Melted 304L. J Electrochem Soc 165:C234–C242. https://doi.org/10.1149/2.0431805jes

    Article  Google Scholar 

  153. Corengia P, Ybarra G, Moina C et al (2004) Microstructure and corrosion behaviour of DC-pulsed plasma nitrided AISI 410 martensitic stainless steel. Surf Coatings Technol 187:63–69. https://doi.org/10.1016/j.surfcoat.2004.01.031

    Article  Google Scholar 

  154. Ko G, Kim W, Kwon K, Lee TK (2021) The corrosion of stainless steel made by additive manufacturing: a review. Metals (Basel) 11:1–21. https://doi.org/10.3390/met11030516

    Article  Google Scholar 

  155. Hagen M (2000) Corrosion of steels. In: Materials Science and Technology: A Comprehensive Treatment: Corrosion and Environmental Degradation. R. W. Cahn, P. Haasen, E. J. Kramer, pp 1–68

  156. Lorusso M (2019) Tribological and wear behavior of metal alloys produced by laser powder bed fusion (LPBF). In: Mohammad Asaduzzaman Chowdhury (ed) Friction, Lubrication and Wear. IntechOpen

  157. Ralls AM, Kumar P, Menezes PL (2021) Tribological properties of additive manufactured materials for energy applications: a review. Processes 9:1–33. https://doi.org/10.3390/pr9010031

    Article  Google Scholar 

  158. Liu Y, Zhai X, Deng Y, Wu D (2019) Tribological property of selective laser melting–processed 316L stainless steel against filled PEEK under water lubrication. Tribol Trans 62:962–970. https://doi.org/10.1080/10402004.2019.1635671

    Article  Google Scholar 

  159. Obeidi MA, Mussatto A, Dogu MN et al (2022) Laser surface polishing of Ti-6Al-4V parts manufactured by laser powder bed fusion. Surf Coatings Technol 434:128179. https://doi.org/10.1016/j.surfcoat.2022.128179

    Article  Google Scholar 

  160. Chen K, Wang C, Hong Q et al (2020) Selective laser melting 316L/CuSn10 multi-materials: processing optimization, interfacial characterization and mechanical property. J Mater Process Technol 283:116701. https://doi.org/10.1016/j.jmatprotec.2020.116701

    Article  Google Scholar 

Download references

Funding

This work is supported by FCT (Fundação para a Ciência e a Tecnologia) through the grant SFRH/BD/147460/2019 and the project POCI-01–0247-FEDER-024533. Additionally, this work is supported by FCT national funds, under the national support to R&D unit grants, through the reference projects UIDB/04436/2020 and UIDP/04436/2020, and UIDB/00285/2020.

Author information

Authors and Affiliations

Authors

Contributions

Ângela Cunha: methodology, investigation, writing–original draft. Ana Marques: investigation, writing–review & editing. Mariana Rodrigues Silva: writing–review & editing. Flávio Bartolomeu: writing–review & editing. Filipe Samuel Silva: supervision, writing–review & editing. Michael Gasik: writing–review and editing. Bruno Trindade: conceptualization, validation, writing–review & editing. Óscar Carvalho: conceptualization, supervision, writing–review & editing.

Corresponding author

Correspondence to Ângela Cunha.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

The authors declare that all authors have approved the manuscript and agree with its submission to IJAMT.

Consent for publication

The authors declare that all authors agree to sign the transfer of copyright for the publisher to publish this article upon on acceptance.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cunha, Â., Marques, A., Silva, M.R. et al. Laser powder bed fusion of the steels used in the plastic injection mould industry: a review of the influence of processing parameters on the final properties. Int J Adv Manuf Technol 121, 4255–4287 (2022). https://doi.org/10.1007/s00170-022-09588-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-09588-0

Keywords

Navigation