Skip to main content
Log in

Roll bonding mechanism for Mg/Al composite plate based on electron work function in the initial stage

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Mg/Al laminate composites were prepared at 400 ℃ for 15 min through single-pass rolling with reduction ratio from 10 to 27%. The bonding mechanism of the initial bonding stage under low pressure was studied. Two critical statuses (beginning bonding and complete bonding) are found at the reduction ratio of 14.5% and 21.75%. In this article, the coincidence of the ratio of external force (normal stress) and internal force (electronic force) at the two critical points shows that electrons overcome the potential barriers of Mg and Al respectively and make them move freely to form metal bonds. The free movement of electrons between two metal interfaces forms a metallic bond, which bonds the two metals. The formation of metallic bonds overcomes the classical barrier to achieve electron free motion. The ratio of σMg to σAl (σMg/σAl) is 0.7340, and the ratio of fMg to fAl (fMg/fAl) is 0.7988, where it can be found that the former agrees well with the latter. The good agreement between theory and experiment proves that overcoming the potential barrier plays an important role in the early bonding stage of bimetal composite plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available upon reasonable request from the authors.

References

  1. Chen ZQ, Wang DY, Cao XQ, Yang WW, Wang WX (2018) Influence of multi-pass rolling and subsequent annealing on the interface microstructure and mechanical properties of the explosive welding Mg/Al composite plates. Mater Sci Eng A 723:97–108

    Article  Google Scholar 

  2. Alaneme KK, Okotete EA (2017) Enhancing plastic deformability of Mg and its alloys—a review of traditional and nascent developments. J Magnes Alloy 5:460–475

    Article  Google Scholar 

  3. Seetharaman S, Blawert C, Ng BM, Wong WLE, Goh CS, Hort N, Gupta M (2015) Effect of erbium modification on the microstructure, mechanical and corrosion characteristics of binary Mg–Al alloys. J Alloys Compd 648:759–770

    Article  Google Scholar 

  4. Mueller S, Mueller K, Tao H, Reimers W (2006) Microstructure and mechanical properties of the extruded Mg-alloys AZ31, AZ61, AZ80. Int J Mater Res 97:1384–1391

    Article  Google Scholar 

  5. Mordike BL, Ebert T (2001) Magnesium: properties — applications — potential. Mater Sci Eng A 302:37–45

    Article  Google Scholar 

  6. Nie HH, Liang W, Chi CZ, Li XR, Fan HW, Yang FQ (2015) Effect of annealing on microstructure and tensile properties of 5052/AZ31/5052 clad sheets. Jom 68:1282–1292

    Article  Google Scholar 

  7. Kim E-Y, Cho J, Kim H-W, Choi S-H (2011) Evolution of deformation texture in Al/Al–Mg/Al composite sheets during cold-roll cladding. Mater Sci Eng A 530:244–252

    Article  Google Scholar 

  8. Gali OA, Shafiei M, Hunter JA, Riahi AR (2014) The influence of hot rolling on oxide development within micro-cracks of aluminum–magnesium alloys. Mater Sci Eng A 618:129–141

    Article  Google Scholar 

  9. Hoseini Athar MM, Tolaminejad B (2015) Weldability window and the effect of interface morphology on the properties of Al/Cu/Al laminated composites fabricated by explosive welding. Mater Des 86:516–525

    Article  Google Scholar 

  10. Liu WS, Long LP, Ma YZ, Wu L (2015) Microstructure evolution and mechanical properties of Mg/Al diffusion bonded joints. J Alloys Compd 643:34–39

    Article  Google Scholar 

  11. Hoseini-Athar MM, Tolaminejad B (2016) Interface morphology and mechanical properties of Al-Cu-Al laminated composites fabricated by explosive welding and subsequent rolling process. Met Mater Int 22:670–680

    Article  Google Scholar 

  12. Wang T, Li S, Ren ZK, Jia Y, Fu WS, Guo M, Ma XC, Han JC (2019) Microstructure characterization and mechanical property of Mg/Al laminated composite prepared by the novel approach: corrugated + flat rolling (CFR). Metals 9:690

    Article  Google Scholar 

  13. Nie HH, Liang W, Chen HS, Zheng LW, Chi CZ, Li XR (2018) Effect of annealing on the microstructures and mechanical properties of Al/Mg/Al laminates. Mater Sci Eng A 732:6–13

    Article  Google Scholar 

  14. Eizadjou M, Danesh Manesh H, Janghorban K (2008) Investigation of roll bonding between aluminum alloy strips. Mater Des 29:909–913

    Article  Google Scholar 

  15. Peng XK, Heness G, Yeung WY (1999) Effect of rolling temperature on interface and bond strength development of roll bonded copper/aluminium metal laminates. J Mater Sci 34:277–281

    Article  Google Scholar 

  16. Wang C, Jiang Y, Xie J, Zhou D, Zhang X (2017) Interface formation and bonding mechanism of embedded aluminum-steel composite sheet during cold roll bonding. Mater Sci Eng A 708:50–59

    Article  Google Scholar 

  17. Cave J (1973) The mechanism of cold pressure welding by rolling. J Inst Met 101:203–207

    Google Scholar 

  18. Wang J, Misra A, Hoagland RG, Hirth JP (2012) Slip transmission across fcc/bcc interfaces with varying interface shear strengths. Acta Mater 60:1503–1513

    Article  Google Scholar 

  19. Li DY, Li W (2001) Electron work function: a parameter sensitive to the adhesion behavior of crystallographic surfaces. Appl Phys Lett 79:4337–4338

    Article  Google Scholar 

  20. Kabra D, Song MH, Wenger B, Friend RH, Snaith HJ (2008) High efficiency composite metal oxide-polymer electroluminescent devices: a morphological and material based investigation. Adv Mater 20:3447–3452

    Article  Google Scholar 

  21. Yang LX, Luo SL, Li Y, Xiao Y, Kang Q, Cai QY (2010) High efficient photocatalytic degradation of p-nitrophenol on a unique Cu2O/TiO2 p-n heterojunction network catalyst. Environ Sci Technol 44:7641–7646

    Article  Google Scholar 

  22. Grover R, Carthy BM, Zhao Y, Jabbour GE, Sarid D, Laws GM, Takulapalli BR, Thornton TJ, Gust D (2004) Kelvin probe force microscopy as a tool for characterizing chemical sensors. Appl Phys Lett 85:3926–3928

    Article  Google Scholar 

  23. Moutinho HR, Dhere RG, Jiang CS, Yan Y, Albin DS, Al-Jassim MM (2010) Investigation of potential and electric field profiles in cross sections of CdTe/CdS solar cells using scanning Kelvin probe microscopy. J Appl Phys 108

    Article  Google Scholar 

  24. Hua G, Li D (2011) Generic relation between the electron work function and Young’s modulus of metals. Appl Phys Lett 99

    Article  Google Scholar 

  25. Zhu HY, Liu S, Liu ZR, Li DY (2018) Tailoring the stability of 10 1 2 twins in magnesium with solute segregation at the twin boundary and strain path control. Comput Mater Sci 152:113–117

    Article  Google Scholar 

  26. Ma H, Chen XQ, Li RH, Wang SL, Dong JH, Ke W (2017) First-principles modeling of anisotropic anodic dissolution of metals and alloys in corrosive environments. Acta Mater 130:137–146

    Article  Google Scholar 

  27. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758

    Article  Google Scholar 

  28. Wang YN, Huang JC (2007) The role of twinning and untwinning in yielding behavior in hot-extruded Mg–Al–Zn alloy. Acta Mater 55:897–905

    Article  Google Scholar 

  29. Somekawa H, Hirai K, Watanabe H, Takigawa Y, Higashi K (2005) Dislocation creep behavior in Mg–Al–Zn alloys. Mater Sci Eng A 407:53–61

    Article  Google Scholar 

  30. Poirier JP (1995) Plastic rheology of crystals. https://doi.org/10.1029/RF002p0237

  31. Jäger A, Lukáč P, Gärtnerová V, Bohlen J, Kainer KU (2004) Tensile properties of hot rolled AZ31 Mg alloy sheets at elevated temperatures. J Alloys Compd 378:184–187

    Article  Google Scholar 

  32. Zhang XP, Yang TH, Castagne S, Gu CF, Wang JT (2011) Proposal of bond criterion for hot roll bonding and its application. Mater Des 32:2239–2245

    Article  Google Scholar 

  33. Govindaraj NV, Lauvdal S, Holmedal B (2013) Tensile bond strength of cold roll bonded aluminium sheets. J Mater Process Technol 213:955–960

    Article  Google Scholar 

  34. Jamaati R, Toroghinejad MR (2010) Effect of friction, annealing conditions and hardness on the bond strength of Al/Al strips produced by cold roll bonding process. Mater Des 31:4508–4513

    Article  Google Scholar 

  35. Jamaati R, Toroghinejad MR (2010) Investigation of the parameters of the cold roll bonding (CRB) process. Mater Sci Eng A 527:2320–2326

    Article  Google Scholar 

  36. Masuda S, Nakauchi I, Tagane A, YAMAWAKI M, (1988) Rolling characteristics of cladding plates in hot roll bonding process. Trans Iron Steel Inst 28:470–477

    Article  Google Scholar 

  37. Yu H-l, Yu Q-b, Kang J-w, Liu X-h (2011) Investigation on temperature change of cold magnesium alloy strips rolling process with heated roll. J Mater Eng Perform 21:1841–1848

    Article  Google Scholar 

  38. Mishra A (2020) Fundamentals of metal forming process. https://doi.org/10.13140/RG.2.2.27150.31043

  39. Rout M, Pal SK, Singh SB (2016) Finite element simulation of a cross rolling process. J Manuf Process 24:283–292

    Article  Google Scholar 

  40. Yang N, Yang D, Chen L, Liu D, Cai M, Fan X (2017) Design and adjustment of the graphene work function via size, modification, defects, and doping: a first-principle theory study. Nanoscale Res Lett 12:642

    Article  Google Scholar 

  41. Vajeeston P, Ravindran P, Kjekshus A, Fjellvåg H (2004) Crystal structure of KAlH4 from first principle calculations. J Alloys Compd 363:L8–L12

    Article  Google Scholar 

  42. Blochl PE (1994) Projector augmented-wave method. Phys Rev B Condens Matter 50:17953–17979

    Article  Google Scholar 

  43. Owen EA, Pickup L, Roberts IO (1935) Lattice constants of five elements possessing hexagonal structure. Z für Krist Cryst Mater 91

    Google Scholar 

  44. Luo Z, Zhu H, Ying T, Li DJ, Zeng XQ (2018) First principles calculations on the influence of solute elements and chlorine adsorption on the anodic corrosion behavior of Mg (0001) surface. Surf Sci 672–673:68–74

    Article  Google Scholar 

  45. Benali A, Lacaze-Dufaure C, Morillo J (2011) Density functional study of copper segregation in aluminum. Surf Sci 605:341–350

    Article  Google Scholar 

  46. Turner DE, Zhu ZZ, Chan CT, Ho KM (1997) Energetics of vacancy and substitutional impurities in aluminum bulk and clusters. Phys Rev B 55:13842

    Article  Google Scholar 

  47. Lang ND, Kohn W (1971) Theory of metal surfaces: work function. Phys Rev B 3:1215–1223

    Article  Google Scholar 

  48. Wachowicz E, Kiejna A (2001) Bulk and surface properties of hexagonal-close-packed Be and Mg. J Phys Condens Matter 13:10767–10776

    Article  Google Scholar 

  49. Chulkov EV, Silkin VM (1986) AB initio calculation of the surface electronic structure of Mg(0001). Solid State Commun 58:273–275

    Article  Google Scholar 

  50. Michaelson HB (1977) The work function of the elements and its periodicity. J Appl Phys 48:4729–4733

    Article  Google Scholar 

  51. Hayden BE, Schweizer E, Kötz R, Bradshaw AM (1981) The early stages of oxidation of magnesium single crystal surfaces. Surf Sci 111:26–38

    Article  Google Scholar 

  52. Benesh GA, Gebreselasie D (1996) Relaxation of Al(001) and Al(110): surface embedded Green function total-energy and force calculation. Phys Rev B 54:5940

    Article  Google Scholar 

  53. Da Silva JLF (2005) All-electron first-principles calculations of clean surface properties of low-Miller-index Al surfaces. Phys Rev B 71

    Article  Google Scholar 

  54. Fall CJ, Binggeli N, Baldereschi A (1998) Anomaly in the anisotropy of the aluminum work function. Phys Rev B 58:R7544

    Article  Google Scholar 

  55. Eastment RM, Mee CHB (1973) Work function measurements on (100), (110) and (111) surfaces of aluminium. J Phys F: Met Phys 3:1738–1745

    Article  Google Scholar 

  56. Zhong W (2019) Measurement of diffusion coefficients of nine elements in magnesium and establishment of a comprehensive mobility database for lightweight magnesium alloys. The Ohio State University

    Google Scholar 

  57. Born M, Huang K (1954) Dynamical theory of crystal lattices Oxford University Press. London, New York

  58. Beck DR (1984) K-shell binding energy of Mg and Ca. J Chem Phys 81:5002–5004

    Article  Google Scholar 

  59. Bagus PS, Pacchioni G (1993) Surface-bulk core-level binding-energy shifts for Al(100). Phys Rev B 48:15274

    Article  Google Scholar 

  60. Li DY, Guo L, Li L, Lu H (2017) Electron work function - a probe for interfacial diagnosis. Sci Rep 7:9673

    Article  Google Scholar 

  61. Greiner W (2011) Quantum mechanics: an introduction. Springer Science & Business Media

  62. Last I, Jortner J (1998) Theoretical study of multielectron dissociative ionization of diatomic molecules and clusters in a strong laser field. Phys Rev A 58:3826

    Article  Google Scholar 

Download references

Funding

This work was supported by the Innovation Project of Graduate Education in Shanxi Province (2020BY110), the National Natural Science Foundation of China (No. 51871158), the STIP of Shanxi (No. 2020L0349), the National Key Research and Development Program (2018YFA0707300), and the General Program of National Natural Science Foundation of China (grant number 51905372).

Author information

Authors and Affiliations

Authors

Contributions

Haoyue Jia: conceptualization, methodology, software, data curation, writing–original draft. Jianchao Han: supervision, project administration. Kun Li: investigation, visualization. Yunzhong Lai: methodology, conceptualization, writing—review and editing. Tao Wang: validation, writing–review and editing.

Corresponding authors

Correspondence to Yunzhong Lai or Tao Wang.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, H., Han, J., Li, K. et al. Roll bonding mechanism for Mg/Al composite plate based on electron work function in the initial stage. Int J Adv Manuf Technol 121, 4517–4531 (2022). https://doi.org/10.1007/s00170-022-09419-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-09419-2

Keywords

Navigation