Skip to main content

Polishing of additive manufactured metallic components: retrospect on existing methods and future prospects

Abstract

Additive manufacturing (AM) is an advanced near net shape manufacturing technology that facilitates the formation of complex shaped products from a digital 3D design. Freedom of design, minimal scrap formation, and mass customization make AM technology dominant over conventional methods. Recently, metal additive manufacturing (MAM) gained ambience owing to the ever-increasing demand for complex and customized metallic parts/components in aerospace, biomedical, automotive and marine industries. However, the parts/components produced by MAM cannot be directly employed in practical applications due to the poor surface integrity and loss of dimensional accuracy. Metallic AM surfaces are characterized by staircase effect, balling phenomena, lack of fusion defects, porosities and cracks. In order to overcome the aforementioned problems, several post-processing methods have been introduced by researchers over the years. These include laser polishing, abrasive finishing, chemical and electrochemical polishing, conventional finishing, electrical discharge polishing, and some other hybrid methods. The principle of operation, significant outcomes in terms of surface modification as well as pros and cons of each of these methods are discussed in detail in this review article. The comprehensive outlook of the paper establishes a foundation of reference for future research works in the area of post-processing metallic AM components. Moreover, the future path of research ahead in the domain of post-processing methods has been discussed with special attention on automation of finishing methods using machine learning and artificial intelligence.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Hull CW (1986) Apparatus for production of three-dimensional objects by stereolithography. U.S.P.a.T. Office, U.S.

    Google Scholar 

  2. King WE, Anderson AT, Ferencz RM, Hodge NE, Kamath C, Khairallah SA, Rubenchik AM (2015) Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges. Appl Phys Rev 2:041304. https://doi.org/10.1063/1.4937809

    Article  Google Scholar 

  3. Thompson SM, Bian L, Shamsaei N, Yadollahi A (2015) An overview of Direct Laser Deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics. Addit Manuf 8:36–62. https://doi.org/10.1016/j.addma.2015.07.001

    Article  Google Scholar 

  4. Ziaee M, Crane NB (2019) Binder jetting: A review of process, materials, and methods. Addit Manuf 28:781–801. https://doi.org/10.1016/j.addma.2019.05.031

    Article  Google Scholar 

  5. Obikawa T, Yoshino M, Shinozuka J (1999) Sheet steel lamination for rapid manufacturing. J Mater Process Technol 89–90:171–176. https://doi.org/10.1016/S0924-0136(99)00027-8

    Article  Google Scholar 

  6. Leary M (2020) Chapter 11 - Powder bed fusion. In: Leary M (ed) Design for Additive Manufacturing. Elsevier, pp 295–319

    Chapter  Google Scholar 

  7. Wong KV, Hernandez A (2012) A Review of Additive Manufacturing. ISRN Mech Eng 2012:208760. https://doi.org/10.5402/2012/208760

    Article  Google Scholar 

  8. Horn TJ, Harrysson OL (2012) Overview of current additive manufacturing technologies and selected applications. Sci Prog 95:255–282. https://doi.org/10.3184/003685012X13420984463047

    Article  Google Scholar 

  9. Fielding GA, Bandyopadhyay A, Bose S (2012) Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds. Dent Mater 28:113–122. https://doi.org/10.1016/j.dental.2011.09.010

    Article  Google Scholar 

  10. Zhang B, Li Y, Bai Q (2017) Defect Formation Mechanisms in Selective Laser Melting: A Review. Chin J Mech Eng 30:515–527. https://doi.org/10.1007/s10033-017-0121-5

    Article  Google Scholar 

  11. Anand M, Das AK (2021) Issues in fabrication of 3D components through DMLS Technique: A review. Opt Laser Technol 139:106914. https://doi.org/10.1016/j.optlastec.2021.106914

    Article  Google Scholar 

  12. Nagarajan B, Hu Z, Song X, Zhai W, Wei J (2019) Development of Micro Selective Laser Melting: The State of the Art and Future Perspectives. Engineering 5:702–720. https://doi.org/10.1016/j.eng.2019.07.002

    Article  Google Scholar 

  13. Gu D, Shen Y (2009) Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods. Mater Des 30:2903–2910. https://doi.org/10.1016/j.matdes.2009.01.013

    Article  Google Scholar 

  14. Li R, Liu J, Shi Y, Wang L, Jiang W (2012) Balling behavior of stainless steel and nickel powder during selective laser melting process. Int J Adv Manuf Technol 59:1025–1035. https://doi.org/10.1007/s00170-011-3566-1

    Article  Google Scholar 

  15. Liu S, Guo H (2020) Balling Behavior of Selective Laser Melting (SLM) Magnesium Alloy. Materials (Basel, Switzerland) 13:3632. https://doi.org/10.3390/ma13163632

    Article  Google Scholar 

  16. Aboulkhair NT, Maskery I, Tuck C, Ashcroft I, Everitt NM (2016) On the formation of AlSi10Mg single tracks and layers in selective laser melting: Microstructure and nano-mechanical properties. J Mater Process Technol 230:88–98. https://doi.org/10.1016/j.jmatprotec.2015.11.016

    Article  Google Scholar 

  17. Zhang M, Sun C-N, Zhang X, Goh PC, Wei J, Hardacre D, Li H (2017) Fatigue and fracture behaviour of laser powder bed fusion stainless steel 316L: Influence of processing parameters. Mater Sci Eng A 703:251–261. https://doi.org/10.1016/j.msea.2017.07.071

    Article  Google Scholar 

  18. Alghamdi A, Maconachie T, Downing D, Brandt M, Qian M, Leary M (2020) Effect of additive manufactured lattice defects on mechanical properties: an automated method for the enhancement of lattice geometry. Int J Adv Manuf Technol 108:957–971. https://doi.org/10.1007/s00170-020-05394-8

    Article  Google Scholar 

  19. Narasimharaju SR, Liu W, Zeng W, See TL, Scott P, Jiang X, Lou S (2021) Surface Texture Characterization of Metal Selective Laser Melted Part With Varying Surface Inclinations. J Tribol. https://doi.org/10.1115/1.4050455

    Article  Google Scholar 

  20. Yasa E, Poyraz O, Solakoglu EU, Akbulut G, Oren S (2016) A study on the stair stepping effect in direct metal laser sintering of a nickel-based superalloy. Procedia CIRP 45:175–178. https://doi.org/10.1016/j.procir.2016.02.068

    Article  Google Scholar 

  21. Du Plessis A (2021) 6 - Porosity in laser powder bed fusion. In: Yadroitsev I, Yadroitsava I, du Plessis A, MacDonald E (eds) Fundamentals of Laser Powder Bed Fusion of Metals. Elsevier, pp 155–178

    Chapter  Google Scholar 

  22. Aboulkhair NT, Everitt NM, Ashcroft I, Tuck C (2014) Reducing porosity in AlSi10Mg parts processed by selective laser melting. Addit Manuf 1–4:77–86. https://doi.org/10.1016/j.addma.2014.08.001

    Article  Google Scholar 

  23. Gong H, Rafi K, Gu H, Starr T, Stucker B (2014) Analysis of defect generation in Ti–6Al–4V parts made using powder bed fusion additive manufacturing processes. Addit Manuf 1–4:87–98. https://doi.org/10.1016/j.addma.2014.08.002

    Article  Google Scholar 

  24. Thijs L, Verhaeghe F, Craeghs T, Humbeeck JV, Kruth J-P (2010) A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater 58:3303–3312. https://doi.org/10.1016/j.actamat.2010.02.004

    Article  Google Scholar 

  25. Wu H, Zhang D, Yang B, Chen C, Li Y, Zhou K, Jiang L, Liu R (2020) Microstructural evolution and defect formation in a powder metallurgy nickel-based superalloy processed by selective laser melting. J Mater Sci Technol 36:7–17. https://doi.org/10.1016/j.jmst.2019.08.007

    Article  Google Scholar 

  26. Li R, Shi Y, Wang Z, Wang L, Liu J, Jiang W (2010) Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting. Appl Surf Sci 256:4350–4356. https://doi.org/10.1016/j.apsusc.2010.02.030

    Article  Google Scholar 

  27. Sanaei N, Fatemi A, Phan N (2019) Defect characteristics and analysis of their variability in metal L-PBF additive manufacturing. Mater Des 182:108091. https://doi.org/10.1016/j.matdes.2019.108091

    Article  Google Scholar 

  28. Kok Y, Tan XP, Wang P, Nai MLS, Loh NH, Liu E, Tor SB (2018) Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review. Mater Des 139:565–586. https://doi.org/10.1016/j.matdes.2017.11.021

    Article  Google Scholar 

  29. Wang Z, Wu W, Qian G, Sun L, Li X, Correia JAFO (2019) In-situ SEM investigation on fatigue behaviors of additive manufactured Al-Si10-Mg alloy at elevated temperature. Eng Fract Mech 214:149–163. https://doi.org/10.1016/j.engfracmech.2019.03.040

    Article  Google Scholar 

  30. Zerbst U, Madia M, Klinger C, Bettge D, Murakami Y (2019) Defects as a root cause of fatigue failure of metallic components. III: Cavities, dents, corrosion pits, scratches. Eng Fail Anal 97:759–776. https://doi.org/10.1016/j.engfailanal.2019.01.034

    Article  Google Scholar 

  31. du Plessis A, Yadroitsava I, Yadroitsev I (2020) Effects of defects on mechanical properties in metal additive manufacturing: A review focusing on X-ray tomography insights. Mater Des 187:108385. https://doi.org/10.1016/j.matdes.2019.108385

    Article  Google Scholar 

  32. Hu YN, Wu SC, Withers PJ, Zhang J, Bao HYX, Fu YN, Kang GZ (2020) The effect of manufacturing defects on the fatigue life of selective laser melted Ti-6Al-4V structures. Mater Des 192:108708. https://doi.org/10.1016/j.matdes.2020.108708

    Article  Google Scholar 

  33. Bandyopadhyay A, Bose S (2019) Additive Manufacturing, 2nd edn. CRC Press

    Book  Google Scholar 

  34. Najmon JC, Raeisi S, Tovar A (2019) 2 - Review of additive manufacturing technologies and applications in the aerospace industry. In: Froes F, Boyer R (eds) Additive Manufacturing for the Aerospace Industry. Elsevier, pp 7–31

    Chapter  Google Scholar 

  35. Airbus installs first 3D printed titanium bracket on a production A350 aircraft. https://3dprintingindustry.com/news/airbus-installs-first-3d-printed-titanium-bracket-production-a350-aircraft-121212/. Accessed 14 Sept 2017

  36. da Costa PR, Sardinha M, Reis L, Freitas M, Fonte M (2021) Ultrasonic fatigue testing in as-built and polished Ti6Al4V alloy manufactured by SLM. Forces Mech 4:100024. https://doi.org/10.1016/j.finmec.2021.100024

    Article  Google Scholar 

  37. Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D (2018) Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos B 143:172–196. https://doi.org/10.1016/j.compositesb.2018.02.012

    Article  Google Scholar 

  38. Tang HP, Zhao P, Xiang CS, Liu N, Jia L (2018) 3.3 - Ti-6Al-4V orthopedic implants made by selective electron beam melting. In: Froes FH, Qian M (eds) Titanium in Medical and Dental Applications. Woodhead Publishing, pp 239–249

    Google Scholar 

  39. Desrousseaux C, Sautou V, Descamps S, Traoré O (2013) Modification of the surfaces of medical devices to prevent microbial adhesion and biofilm formation. J Hosp Infect 85:87–93. https://doi.org/10.1016/j.jhin.2013.06.015

    Article  Google Scholar 

  40. Wennerberg A, Albrektsson T (2006) Implant surfaces beyond micron roughness. Experimental and clinical knowledge of surface topography and surface chemistry. International Dentistry SA 8:14–18

  41. Gora WS, Tian Y, Cabo AP, Ardron M, Maier RR, Prangnell P, Weston NJ, Hand DP (2016) Enhancing surface finish of additively manufactured titanium and cobalt chrome elements using laser based finishing. Phys Procedia 83:258–263. https://doi.org/10.1016/j.phpro.2016.08.021

    Article  Google Scholar 

  42. Obeidi MA, Mussatto A, Dogu MN, Sreenilayam SP, McCarthy E, Ahad IU, Keaveney S, Brabazon D (2022) Laser surface polishing of Ti-6Al-4V parts manufactured by laser powder bed fusion. Surf Coat Technol 434:128179. https://doi.org/10.1016/j.surfcoat.2022.128179

    Article  Google Scholar 

  43. Ramachandran RV, Radhakrishnan V (1974) Influence of surface finish on interference fits. Int J Prod Res 12:705–719. https://doi.org/10.1080/00207547408919587

    Article  Google Scholar 

  44. Giorleo L, Ceretti E, Giardini C (2015) Ti Surface Laser Polishing: Effect of Laser Path and Assist Gas. Procedia CIRP 33:446–451. https://doi.org/10.1016/j.procir.2015.06.102

    Article  Google Scholar 

  45. Lamikiz A, Sánchez JA, López de Lacalle LN, Arana JL (2007) Laser polishing of parts built up by selective laser sintering. Int J Mach Tools Manuf 47:2040–2050. https://doi.org/10.1016/j.ijmachtools.2007.01.013

    Article  Google Scholar 

  46. Bordatchev EV, Hafiz AMK, Tutunea-Fatan OR (2014) Performance of laser polishing in finishing of metallic surfaces. Int J Adv Manuf Technol 73:35–52. https://doi.org/10.1007/s00170-014-5761-3

    Article  Google Scholar 

  47. Ramos-Grez JA, Bourell DL (2004) Reducing surface roughness of metallic freeform-fabricated parts using non-tactile finishing methods. Int J Mater Prod Technol 21:297–316. https://doi.org/10.1504/ijmpt.2004.004944

    Article  Google Scholar 

  48. Sanap VG, Shinde VD (2020) Machinability improvement of Inconel 718 during heat treatment - A review. J Phys Conf Ser 1706:012175. https://doi.org/10.1088/1742-6596/1706/1/012175

    Article  Google Scholar 

  49. Dadbakhsh S, Hao L, Kong CY (2010) Surface finish improvement of LMD samples using laser polishing. Virtual Phys Prototyping 5:215–221. https://doi.org/10.1080/17452759.2010.528180

    Article  Google Scholar 

  50. Marimuthu S, Triantaphyllou A, Antar M, Wimpenny D, Morton H, Beard M (2015) Laser polishing of selective laser melted components. Int J Mach Tools Manuf 95:97–104. https://doi.org/10.1016/j.ijmachtools.2015.05.002

    Article  Google Scholar 

  51. Yung K, Xiao T, Choy H, Wang W, Cai Z (2018) Laser polishing of additive manufactured CoCr alloy components with complex surface geometry. J Mater Process Technol 262:53–64. https://doi.org/10.1016/j.jmatprotec.2018.06.019

    Article  Google Scholar 

  52. Morgan RH, Papworth AJ, Sutcliffe C, Fox P, O’Neill W (2002) High density net shape components by direct laser re-melting of single-phase powders. J Mater Sci 37:3093–3100. https://doi.org/10.1023/A:1016185606642

    Article  Google Scholar 

  53. Yasa E, Deckers J, Kruth JP (2011) The investigation of the influence of laser re-melting on density, surface quality and microstructure of selective laser melting parts. Rapid Prototyping J 17:312–327. https://doi.org/10.1108/13552541111156450

    Article  Google Scholar 

  54. Vaithilingam J, Goodridge RD, Hague RJ, Christie SD, Edmondson S (2016) The effect of laser remelting on the surface chemistry of Ti6al4V components fabricated by selective laser melting. J Mater Process Technol 232:1–8. https://doi.org/10.1016/j.jmatprotec.2016.01.022

    Article  Google Scholar 

  55. Alrbaey K, Wimpenny D, Tosi R, Manning W, Moroz A (2014) On Optimization of Surface Roughness of Selective Laser Melted Stainless Steel Parts: A Statistical Study. J Mater Eng Perform 23:2139–2148. https://doi.org/10.1007/s11665-014-0993-9

    Article  Google Scholar 

  56. Schanz J, Hofele M, Hitzler L, Merkel M, Riegel H (2016) Laser polishing of additive manufactured AlSi10Mg parts with an oscillating laser beam. Machining Joining and Modifications of Advanced Materials. Springer, pp 159–169

    Chapter  Google Scholar 

  57. Alfieri V, Argenio P, Caiazzo F, Sergi V (2017) Reduction of surface roughness by means of laser processing over additive manufacturing metal parts. Materials 10:30. https://doi.org/10.3390/ma10010030

    Article  Google Scholar 

  58. Ma C, Guan Y, Zhou W (2017) Laser polishing of additive manufactured Ti alloys. Opt Lasers Eng 93:171–177. https://doi.org/10.1016/j.optlaseng.2017.02.005

    Article  Google Scholar 

  59. Zhihao F, Libin L, Longfei C, Yingchun G (2018) Laser Polishing of Additive Manufactured Superalloy. Procedia CIRP 71:150–154. https://doi.org/10.1016/j.procir.2018.05.088

    Article  Google Scholar 

  60. Worts N, Jones J, Squier J (2019) Surface structure modification of additively manufactured titanium components via femtosecond laser micromachining. Opt Commun 430:352–357. https://doi.org/10.1016/j.optcom.2018.08.055

    Article  Google Scholar 

  61. Kam DH, Bhattacharya S, Mazumder J (2012) Control of the wetting properties of an AISI 316L stainless steel surface by femtosecond laser-induced surface modification. J Micromech Microeng 22:105019. https://doi.org/10.1088/0960-1317/22/10/105019

    Article  Google Scholar 

  62. Obeidi MA, McCarthy E, O’Connell B, Ul Ahad I, Brabazon D (2019) Laser polishing of additive manufactured 316L stainless steel synthesized by selective laser melting. Materials 12:991. https://doi.org/10.3390/ma12060991

    Article  Google Scholar 

  63. El Hassanin A, Obeidi MA, Scherillo F, Brabazon D (2021) CO2 laser polishing of laser-powder bed fusion produced AlSi10Mg parts. Surf Coat Technol 419:127291. https://doi.org/10.1016/j.surfcoat.2021.127291

    Article  Google Scholar 

  64. Bhaduri D, Ghara T, Penchev P, Paul S, Pruncu CI, Dimov S, Morgan D (2021) Pulsed laser polishing of selective laser melted aluminium alloy parts. Appl Surf Sci 558:149887. https://doi.org/10.1016/j.apsusc.2021.149887

    Article  Google Scholar 

  65. Hofele M, Schanz J, Roth A, Harrison DK, De Silva AKM, Riegel H (2021) Process parameter dependencies of continuous and pulsed laser modes on surface polishing of additive manufactured aluminium AlSi10Mg parts. Materialwiss Werkstofftech 52:409–432. https://doi.org/10.1002/mawe.202000335

    Article  Google Scholar 

  66. Krishnan A, Fang F (2019) Review on mechanism and process of surface polishing using lasers. Front Mech Eng China 14:299–319. https://doi.org/10.1007/s11465-019-0535-0

    Article  Google Scholar 

  67. Chen C, Tsai H-L (2018) Fundamental study of the bulge structure generated in laser polishing process. Opt Lasers Eng 107:54–61. https://doi.org/10.1016/j.optlaseng.2018.03.006

    Article  Google Scholar 

  68. Basha SM, Bhuyan M, Basha MM, Venkaiah N, Sankar MR (2020) Laser polishing of 3D printed metallic components: A review on surface integrity. Mater Today Proc 26:2047–2054. https://doi.org/10.1016/j.matpr.2020.02.443

    Article  Google Scholar 

  69. Avilés R, Albizuri J, Ukar E, Lamikiz A, Avilés A (2014) Influence of laser polishing in an inert atmosphere on the high cycle fatigue strength of AISI 1045 steel. Int J Fatigue 68:67–79. https://doi.org/10.1016/j.ijfatigue.2014.06.004

    Article  Google Scholar 

  70. Ermergen T, Taylan F (2021) Review on Surface Quality Improvement of Additively Manufactured Metals by Laser Polishing. Arab J Sci Eng 46:7125–7141. https://doi.org/10.1007/s13369-021-05658-9

    Article  Google Scholar 

  71. Gale WF, Totemeier TC (2004) 10 - Metallography. In: Gale WF, Totemeier TC (eds) Smithells Metals Reference Book, 8th edn. Butterworth-Heinemann, Oxford, pp 10-11-10–87

    Google Scholar 

  72. Gabe DR (1994) 11.3 - Chemical and Electrolytic Polishing. In: Shreir LL, Jarman RA, Burstein GT (eds) Corrosion, 3rd edn. Butterworth-Heinemann, Oxford, p 11:24-11:39

    Chapter  Google Scholar 

  73. Reidenbach F (1994) ASM Handbook Surface Engineering. ASM International

  74. Yang G, Wang B, Tawfiq K, Wei H, Zhou S, Chen G (2017) Electropolishing of surfaces: theory and applications. Surf Eng 33:149–166. https://doi.org/10.1080/02670844.2016.1198452

    Article  Google Scholar 

  75. Vander Voort GF (2004) Chemical and Electrolytic Polishing. Metallography and Microstructures. ASM International

    Chapter  Google Scholar 

  76. Han W, Fang F (2019) Fundamental aspects and recent developments in electropolishing. Int J Mach Tools Manuf 139:1–23. https://doi.org/10.1016/j.ijmachtools.2019.01.001

    Article  Google Scholar 

  77. Ventola CL (2014) Medical Applications for 3D Printing: Current and Projected Uses. P & T 39:704–711

    Google Scholar 

  78. Wysocki B, Idaszek J, Buhagiar J, Szlązak K, Brynk T, Kurzydłowski KJ, Święszkowski W (2019) The influence of chemical polishing of titanium scaffolds on their mechanical strength and in-vitro cell response. Mater Sci Eng C 95:428–439. https://doi.org/10.1016/j.msec.2018.04.019

    Article  Google Scholar 

  79. Scherillo F (2019) Chemical surface finishing of AlSi10Mg components made by additive manufacturing. Manuf Lett 19:5–9. https://doi.org/10.1016/j.mfglet.2018.12.002

    Article  Google Scholar 

  80. Zhang Y, Li J, Che S, Yang Z, Tian Y (2019) Chemical leveling mechanism and oxide film properties of additively manufactured Ti–6Al–4V alloy. J Mater Sci 54:13753–13766. https://doi.org/10.1007/s10853-019-03855-4

    Article  Google Scholar 

  81. Tyagi P, Goulet T, Riso C, Garcia-Moreno F (2019) Reducing surface roughness by chemical polishing of additively manufactured 3D printed 316 stainless steel components. Int J Adv Manuf Technol 100:2895–2900. https://doi.org/10.1007/s00170-018-2890-0

    Article  Google Scholar 

  82. Balyakin A, Goncharov E, Zhuchenko E (2019) The effect of preprocessing on surface quality in the chemical polishing of parts from titanium alloy produced by SLM. Mater Today Proc 19:2291–2294. https://doi.org/10.1016/j.matpr.2019.07.671

    Article  Google Scholar 

  83. Bezuidenhout M, Ter Haar G, Becker T, Rudolph S, Damm O, Sacks N (2020) The effect of HF-HNO3 chemical polishing on the surface roughness and fatigue life of laser powder bed fusion produced Ti6Al4V. Mater Today Commun 25:101396. https://doi.org/10.1016/j.mtcomm.2020.101396

    Article  Google Scholar 

  84. Pyka G, Burakowski A, Kerckhofs G, Moesen M, Van Bael S, Schrooten J, Wevers M (2012) Surface Modification of Ti6Al4V Open Porous Structures Produced by Additive Manufacturing. Adv Eng Mater 14:363–370. https://doi.org/10.1002/adem.201100344

    Article  Google Scholar 

  85. Ali U, Fayazfar H, Ahmed F, Toyserkani E (2020) Internal surface roughness enhancement of parts made by laser powder-bed fusion additive manufacturing. Vacuum 177:109314. https://doi.org/10.1016/j.vacuum.2020.109314

    Article  Google Scholar 

  86. Alrbaey K, Wimpenny DI, Al-Barzinjy AA, Moroz A (2016) Electropolishing of Re-melted SLM Stainless Steel 316L Parts Using Deep Eutectic Solvents: 3 × 3 Full Factorial Design. J Mater Eng Perform 25:2836–2846. https://doi.org/10.1007/s11665-016-2140-2

    Article  Google Scholar 

  87. Baicheng Z, Xiaohua L, Jiaming B, Junfeng G, Pan W, Chen-nan S, Muiling N, Guojun Q, Jun W (2017) Study of selective laser melting (SLM) Inconel 718 part surface improvement by electrochemical polishing. Mater Des 116:531–537. https://doi.org/10.1016/j.matdes.2016.11.103

    Article  Google Scholar 

  88. Tyagi P, Goulet T, Riso C, Stephenson R, Chuenprateep N, Schlitzer J, Benton C, Garcia-Moreno F (2019) Reducing the roughness of internal surface of an additive manufacturing produced 316 steel component by chempolishing and electropolishing. Addit Manuf 25:32–38. https://doi.org/10.1016/j.addma.2018.11.001

    Article  Google Scholar 

  89. Jain S, Corliss M, Tai B, Hung WN (2019) Electrochemical polishing of selective laser melted Inconel 718. Procedia Manuf 34:239–246. https://doi.org/10.1016/j.promfg.2019.06.145

    Article  Google Scholar 

  90. Ferchow J, Hofmann U, Meboldt M (2020) Enabling Electropolishing of Complex Selective Laser Melting Structures. Procedia CIRP 91:472–477. https://doi.org/10.1016/j.procir.2020.02.201

    Article  Google Scholar 

  91. Han W, Fang F (2021) Orientation effect of electropolishing characteristics of 316L stainless steel fabricated by laser powder bed fusion. Front Mech Eng China 16:580–592. https://doi.org/10.1007/s11465-021-0633-7

    Article  Google Scholar 

  92. Zhang Z, Liao L, Wang X, Xie W, Guo D (2020) Development of a novel chemical mechanical polishing slurry and its polishing mechanisms on a nickel alloy. Appl Surf Sci 506:144670. https://doi.org/10.1016/j.apsusc.2019.144670

    Article  Google Scholar 

  93. Larsson C, Thomsen P, Lausmaa J, Rodahl M, Kasemo B, Ericson LE (1994) Bone response to surface modified titanium implants: studies on electropolished implants with different oxide thicknesses and morphology. Biomaterials 15:1062–1074. https://doi.org/10.1016/0142-9612(94)90092-2

    Article  Google Scholar 

  94. Spencer JD, Cobb R, Dickens P (1993) Surface finishing techniques for rapid prototyping. Society of manufacturing engineers

  95. Atzeni E, Barletta M, Calignano F, Iuliano L, Rubino G, Tagliaferri V (2016) Abrasive Fluidized Bed (AFB) finishing of AlSi10Mg substrates manufactured by Direct Metal Laser Sintering (DMLS). Addit Manuf 10:15–23. https://doi.org/10.1016/j.addma.2016.01.005

    Article  Google Scholar 

  96. Atzeni E, Rubino G, Salmi A, Trovalusci F (2020) Abrasive fluidized bed finishing to improve the fatigue behaviour of Ti6Al4V parts fabricated by electron beam melting. Int J Adv Manuf Technol 110:557–567. https://doi.org/10.1007/s00170-020-05814-9

    Article  Google Scholar 

  97. Barletta M (2006) A new technology in surface finishing: fluidized bed machining (FBM) of aluminium alloys. J Mater Process Technol 173:157–165. https://doi.org/10.1016/j.jmatprotec.2005.11.020

    Article  Google Scholar 

  98. Tan KL, Yeo S-H, Ong CH (2016) Nontraditional finishing processes for internal surfaces and passages: A review. Proc Inst Mech Eng B J Eng Manuf 231:2302–2316. https://doi.org/10.1177/0954405415626087

    Article  Google Scholar 

  99. El Hassanin A, Troiano M, Scherillo F, Silvestri AT, Contaldi V, Solimene R, Scala F, Squillace A, Salatino P (2020) Rotation-assisted Abrasive Fluidised Bed Machining of AlSi10Mg parts made through Selective Laser Melting Technology. Procedia Manuf 47:1043–1049. https://doi.org/10.1016/j.promfg.2020.04.113

    Article  Google Scholar 

  100. Kumari C, Chak SK (2018) A review on magnetically assisted abrasive finishing and their critical process parameters. Manufacturing Rev. https://doi.org/10.1051/mfreview/2018010

    Article  Google Scholar 

  101. Karakurt I, Ho KY, Ledford C, Gamzina D, Horn T, Luhmann NC, Lin L (2018) Development of a magnetically driven abrasive polishing process for additively manufactured copper structures. Procedia Manuf 26:798–805. https://doi.org/10.1016/j.promfg.2018.07.097

    Article  Google Scholar 

  102. Wu P-Y, Yamaguchi H (2018) Material removal mechanism of additively manufactured components finished using magnetic abrasive finishing. Procedia Manuf 26:394–402. https://doi.org/10.1016/j.promfg.2018.07.047

    Article  Google Scholar 

  103. Zhang J, Chaudhari A, Wang H (2019) Surface quality and material removal in magnetic abrasive finishing of selective laser melted 316L stainless steel. J Manuf Processes 45:710–719. https://doi.org/10.1016/j.jmapro.2019.07.044

    Article  Google Scholar 

  104. Kumar SS, Hiremath SS (2016) A review on abrasive flow machining (AFM). Procedia Technol 25:1297–1304. https://doi.org/10.1016/j.protcy.2016.08.224

    Article  Google Scholar 

  105. Rhoades L (1991) Abrasive flow machining: a case study. J Mater Process Technol 28:107–116. https://doi.org/10.1016/0924-0136(91)90210-6

    Article  Google Scholar 

  106. Duval-Chaneac M, Han S, Claudin C, Salvatore F, Bajolet J, Rech J (2018) Characterization of maraging steel 300 internal surface created by selective laser melting (SLM) after abrasive flow machining (AFM). Procedia CIRP 77:359–362. https://doi.org/10.1016/j.procir.2018.09.035

    Article  Google Scholar 

  107. Duval-Chaneac MS, Han S, Claudin C, Salvatore F, Bajolet J, Rech J (2018) Experimental study on finishing of internal laser melting (SLM) surface with abrasive flow machining (AFM). Precis Eng 54:1–6. https://doi.org/10.1016/j.precisioneng.2018.03.006

    Article  Google Scholar 

  108. Peng C, Fu Y, Wei H, Li S, Wang X, Gao H (2018) Study on improvement of surface roughness and induced residual stress for additively manufactured metal parts by abrasive flow machining. Procedia CIRP 71:386–389. https://doi.org/10.1016/j.procir.2018.05.046

    Article  Google Scholar 

  109. Bouland C, Urlea V, Beaubier K, Samoilenko M, Brailovski V (2019) Abrasive flow machining of laser powder bed-fused parts: numerical modeling and experimental validation. J Mater Process Technol 273:116262. https://doi.org/10.1016/j.jmatprotec.2019.116262

    Article  Google Scholar 

  110. Han S, Salvatore F, Rech J, Bajolet J (2020) Abrasive flow machining (AFM) finishing of conformal cooling channels created by selective laser melting (SLM). Precis Eng 64:20–33. https://doi.org/10.1016/j.precisioneng.2020.03.006

    Article  Google Scholar 

  111. Han S, Salvatore F, Rech J, Bajolet J, Courbon J (2020) Surface integrity in abrasive flow machining (AFM) of internal channels created by selective laser melting (SLM) in different building directions. Procedia CIRP 87:315–320. https://doi.org/10.1016/j.procir.2020.02.022

    Article  Google Scholar 

  112. Han S, Salvatore F, Rech J, Bajolet J, Courbon J (2020) Effect of abrasive flow machining (AFM) finish of selective laser melting (SLM) internal channels on fatigue performance. J Manuf Processes 59:248–257. https://doi.org/10.1016/j.jmapro.2020.09.065

    Article  Google Scholar 

  113. Nagalingam AP, Yeo S (2018) Controlled hydrodynamic cavitation erosion with abrasive particles for internal surface modification of additive manufactured components. Wear 414:89–100. https://doi.org/10.1016/j.wear.2018.08.006

    Article  Google Scholar 

  114. Nagalingam AP, Yuvaraj HK, Santhanam V, Yeo SH (2020) Multiphase hydrodynamic flow finishing for surface integrity enhancement of additive manufactured internal channels. J Mater Process Technol 283:116692. https://doi.org/10.1016/j.jmatprotec.2020.116692

    Article  Google Scholar 

  115. Nagalingam AP, Yuvaraj HK, Yeo S (2020) Synergistic effects in hydrodynamic cavitation abrasive finishing for internal surface-finish enhancement of additive-manufactured components. Addit Manuf 33:101110. https://doi.org/10.1016/j.addma.2020.101110

    Article  Google Scholar 

  116. Tan KL, Yeo SH (2017) Surface modification of additive manufactured components by ultrasonic cavitation abrasive finishing. Wear 378–379:90–95. https://doi.org/10.1016/j.wear.2017.02.030

    Article  Google Scholar 

  117. Tan K, Yeo S (2020) Surface finishing on IN625 additively manufactured surfaces by combined ultrasonic cavitation and abrasion. Addit Manuf 31:100938. https://doi.org/10.1016/j.addma.2019.100938

    Article  Google Scholar 

  118. Fu Y, Gao H, Yan Q, Wang X, Wang X (2020) An efficient approach to improving the finishing properties of abrasive flow machining with the analyses of initial surface texture of workpiece. Int J Adv Manuf Technol 107:2417–2432. https://doi.org/10.1007/s00170-020-05173-5

    Article  Google Scholar 

  119. Rana V, Petare AC, Jain NK (2020) Advances in Abrasive Flow Finishing. In: Das S, Kibria G, Doloi B, Bhattacharyya B (eds) Advances in Abrasive Based Machining and Finishing Processes. Springer International Publishing, Cham, pp 147–181

    Chapter  Google Scholar 

  120. Sambharia J, Mali HS (2017) Recent developments in abrasive flow finishing process: A review of current research and future prospects. Proc. Inst. Mech. Eng. Part B: J Eng Manuf 233:388–399. https://doi.org/10.1177/0954405417731466

    Article  Google Scholar 

  121. Uhlmann E, Roßkamp S (2018) Surface integrity and chip formation in abrasive flow machining. Procedia CIRP 71:446–452. https://doi.org/10.1016/j.procir.2018.05.048

    Article  Google Scholar 

  122. Sirwal SA, Singh AK (2018) Analysis of the surface roughness for novel magnetorheological finishing of a typical blind hole workpiece. Proc Inst Mech Eng C J Mech Eng Sci 233:1541–1561. https://doi.org/10.1177/0954406218776036

    Article  Google Scholar 

  123. Venkatesh G, Sharma AK, Kumar P (2015) On ultrasonic assisted abrasive flow finishing of bevel gears. Int J Mach Tools Manuf 89:29–38. https://doi.org/10.1016/j.ijmachtools.2014.10.014

    Article  Google Scholar 

  124. Shi D, Gibson I (2000) Improving surface quality of selective laser sintered rapid prototype parts using robotic finishing. Proc Inst Mech Eng B J Eng Manuf 214:197–203. https://doi.org/10.1243/0954405001517586

    Article  Google Scholar 

  125. Khorasani AM, Gibson I, Goldberg M, Littlefair G (2018) A comprehensive study on surface quality in 5-axis milling of SLM Ti-6Al-4V spherical components. Int J Adv Manuf Technol 94:3765–3784. https://doi.org/10.1007/s00170-017-1048-9

    Article  Google Scholar 

  126. Bai Y, Zhao C, Yang J, Hong R, Weng C, Wang H (2021) Microstructure and machinability of selective laser melted high-strength maraging steel with heat treatment. J Mater Process Technol 288:116906. https://doi.org/10.1016/j.jmatprotec.2020.116906

    Article  Google Scholar 

  127. Kaynak Y, Tascioglu E (2018) Finish machining-induced surface roughness, microhardness and XRD analysis of selective laser melted Inconel 718 alloy. Procedia CIRP 71:500–504. https://doi.org/10.1016/j.procir.2018.05.013

    Article  Google Scholar 

  128. Kaynak Y, Kitay O (2019) The effect of post-processing operations on surface characteristics of 316L stainless steel produced by selective laser melting. Addit Manuf 26:84–93. https://doi.org/10.1016/j.addma.2018.12.021

    Article  Google Scholar 

  129. Hilpert E, Hartung J, Risse S, Eberhardt R, Tünnermann A (2018) Precision manufacturing of a lightweight mirror body made by selective laser melting. Precis Eng 53:310–317. https://doi.org/10.1016/j.precisioneng.2018.04.013

    Article  Google Scholar 

  130. Zhang XQ, Woon KS, Rahman M (2014) 11.09 - Diamond Turning. In: Hashmi S, Batalha GF, Van Tyne CJ, Yilbas B (eds) Comprehensive Materials Processing. Elsevier, Oxford, pp 201–220

    Chapter  Google Scholar 

  131. Bagehorn S, Wehr J, Maier H (2017) Application of mechanical surface finishing processes for roughness reduction and fatigue improvement of additively manufactured Ti-6Al-4V parts. Int J Fatigue 102:135–142. https://doi.org/10.1016/j.ijfatigue.2017.05.008

    Article  Google Scholar 

  132. Lesyk D, Martinez S, Mordyuk B, Dzhemelinskyi V, Lamikiz A, Prokopenko G (2020) Post-processing of the Inconel 718 alloy parts fabricated by selective laser melting: Effects of mechanical surface treatments on surface topography, porosity, hardness and residual stress. Surf Coat Technol 381:125136. https://doi.org/10.1016/j.surfcoat.2019.125136

    Article  Google Scholar 

  133. Sun Y, Bailey R, Moroz A (2019) Surface finish and properties enhancement of selective laser melted 316L stainless steel by surface mechanical attrition treatment. Surf Coat Technol 378:124993. https://doi.org/10.1016/j.surfcoat.2019.124993

    Article  Google Scholar 

  134. Portella Q, Chemkhi M, Retraint D (2020) Influence of surface mechanical attrition treatment (SMAT) post-treatment on microstructural, mechanical and tensile behaviour of additive manufactured AISI 316L. Mater Charact 167:110463. https://doi.org/10.1016/j.matchar.2020.110463

    Article  Google Scholar 

  135. Childerhouse T, Hernández-Nava E, Tapoglou N, M’Saoubi R, Franca L, Leahy W, Jackson M (2021) The influence of finish machining depth and hot isostatic pressing on defect distribution and fatigue behaviour of selective electron beam melted Ti-6Al-4V. Int J Fatigue 147:106169. https://doi.org/10.1016/j.ijfatigue.2021.106169

    Article  Google Scholar 

  136. Li W, Guo YB, Barkey ME, Jordon JB (2014) Effect Tool Wear During End Milling on the Surface Integrity and Fatigue Life of Inconel 718. Procedia CIRP 14:546–551. https://doi.org/10.1016/j.procir.2014.03.056

    Article  Google Scholar 

  137. Ahmed A, Boban J, Rahman M (2021) Novel EDM deep hole drilling strategy using tubular electrode with orifice. CIRP Ann 70:151–154. https://doi.org/10.1016/j.cirp.2021.04.004

    Article  Google Scholar 

  138. Ahmed A, Rahman M, Kumar AS (2020) Spark erosion based hybrid processes. In: Jain NK, Gupta K (eds) Spark erosion machining. CRC Press, pp 123–151

  139. Curodeau A, Marceau LF, Richard M, Lessard J (2005) New EDM polishing and texturing process with conductive polymer electrodes. J Mater Process Technol 159:17–26. https://doi.org/10.1016/j.jmatprotec.2003.11.004

    Article  Google Scholar 

  140. Chan KS, Koike M, Mason RL, Okabe T (2013) Fatigue life of titanium alloys fabricated by additive layer manufacturing techniques for dental implants. Metall Mater Trans A 44:1010–1022. https://doi.org/10.1007/s11661-012-1470-4

    Article  Google Scholar 

  141. Hassanin H, Modica F, El-Sayed MA, Liu J, Essa K (2016) Manufacturing of Ti–6Al–4V micro-implantable parts using hybrid selective laser melting and micro-electrical discharge machining. Adv Eng Mater 18:1544–1549. https://doi.org/10.1002/adem.201600172

    Article  Google Scholar 

  142. Sofu MM, Taylan F, Ermergen T (2021) Genetic evolutionary approach for surface roughness prediction of laser sintered Ti–6Al–4V in EDM. Zeitschrift für Naturforschung A 76:253–263. https://doi.org/10.1515/zna-2020-0267

    Article  Google Scholar 

  143. Boban J, Ahmed A, Rahman MA, Rahman M (2020) Wire electrical discharge polishing of additive manufactured metallic components. Procedia CIRP 87:321–326. https://doi.org/10.1016/j.procir.2020.02.023

    Article  Google Scholar 

  144. Boban J, Ahmed A (2021) Improving the surface integrity and mechanical properties of additive manufactured stainless steel components by wire electrical discharge polishing. J Mater Process Technol 291:117013. https://doi.org/10.1016/j.jmatprotec.2020.117013

    Article  Google Scholar 

  145. Boban J, Ahmed A (2021) Surface micro-layer modification of selectively laser melted TiAl aloy using wire electrical discharge polishing. Proceedings of World Congress on Micro and Nano Manufacturing (WCMNM) 2021

  146. Boban J, Ahmed A, Assam A (2021) Effect of recirculation zone on debris evacuation during EDM deep hole drilling. Procedia CIRP 102:393–398. https://doi.org/10.1016/j.procir.2021.09.067

    Article  Google Scholar 

  147. Ahmed A, Boban J, Rahman MA (2022) Recent Trends in Arc Machining Processes. In: Kuriachen B, Mathew J, Dixit US (eds) Electric Discharge Hybrid-Machining Processes. CRC Press, pp 87–104

    Chapter  Google Scholar 

  148. Mahdieh MS (2019) Recast layer and heat-affected zone structure of ultra-fined grained low-carbon steel machined by electrical discharge machining. Proc Inst Mech Eng B J Eng Manuf 234:933–944. https://doi.org/10.1177/0954405419889202

    Article  Google Scholar 

  149. Saxena KK, Bellotti M, Qian J, Reynaerts D, Lauwers B, Luo X (2018) Chapter 2 - Overview of Hybrid Machining Processes. In: Luo X, Qin Y (eds) Hybrid Machining. Academic Press, pp 21–41

    Chapter  Google Scholar 

  150. Iquebal AS, El Amri S, Shrestha S, Wang Z, Manogharan GP, Bukkapatnam S (2017) Longitudinal milling and fine abrasive finishing operations to improve surface integrity of metal am components. Procedia Manuf 10:990–996. https://doi.org/10.1016/j.promfg.2017.07.090

    Article  Google Scholar 

  151. Mohammadian N, Turenne S, Brailovski V (2018) Surface finish control of additively-manufactured Inconel 625 components using combined chemical-abrasive flow polishing. J Mater Process Technol 252:728–738. https://doi.org/10.1016/j.jmatprotec.2017.10.020

    Article  Google Scholar 

  152. Bai Y, Zhao C, Yang J, Fuh JYH, Lu WF, Weng C, Wang H (2020) Dry mechanical-electrochemical polishing of selective laser melted 316L stainless steel. Mater Des 193:108840. https://doi.org/10.1016/j.matdes.2020.108840

    Article  Google Scholar 

  153. Wang B, Castellana J, Melkote SN (2021) A hybrid post-processing method for improving the surface quality of additively manufactured metal parts. CIRP Ann 70:175–178. https://doi.org/10.1016/j.cirp.2021.03.010

    Article  Google Scholar 

  154. Luo X, Cai Y, Chavoshi SZ (2018) Chapter 1 - Introduction to Hybrid Machining Technology. In: Luo X, Qin Y (eds) Hybrid Machining. Academic Press, pp 1–20

    Google Scholar 

  155. Singh S, Ramakrishna S (2017) Biomedical applications of additive manufacturing: Present and future. Curr Opin Biomed Eng 2:105–115. https://doi.org/10.1016/j.cobme.2017.05.006

    Article  Google Scholar 

  156. Rosa B, Mognol P, Hascoët J-y (2015) Laser polishing of additive laser manufacturing surfaces. J Laser Appl 27:S29102. https://doi.org/10.2351/1.4906385

    Article  Google Scholar 

  157. Batal A, Michalek A, Penchev P, Kupisiewicz A, Dimov S (2020) Laser processing of freeform surfaces: A new approach based on an efficient workpiece partitioning strategy. Int J Mach Tools Manuf 156:103593. https://doi.org/10.1016/j.ijmachtools.2020.103593

    Article  Google Scholar 

  158. Flynn JM, Shokrani A, Newman ST, Dhokia V (2016) Hybrid additive and subtractive machine tools – Research and industrial developments. Int J Mach Tools Manuf 101:79–101. https://doi.org/10.1016/j.ijmachtools.2015.11.007

    Article  Google Scholar 

  159. Soothill (2018) Additive manufacturing technologies at Sulzer. Sulzer Technical Review 100(2):4–7

  160. Rahman MA, Rahman M, Kumar AS (2018) Material perspective on the evolution of micro- and nano-scale cutting of metal alloys. J Micromanuf 1:97–114. https://doi.org/10.1177/2516598418782318

    Article  Google Scholar 

  161. Rahman MA, Rahman M, Kumar AS (2017) Chip perforation and ‘burnishing–like’ finishing of Al alloy in precision machining. Precis Eng 50:393–409. https://doi.org/10.1016/j.precisioneng.2017.06.014

    Article  Google Scholar 

  162. Petri KL, Billo RE, Bidanda B (1998) A neural network process model for abrasive flow machining operations. J Manuf Syst 17:52–64. https://doi.org/10.1016/S0278-6125(98)80009-5

    Article  Google Scholar 

  163. Oh JH, Lee SH (2011) Prediction of surface roughness in magnetic abrasive finishing using acoustic emission and force sensor data fusion. Proc Inst Mech Eng B J Eng Manuf 225:853–865. https://doi.org/10.1177/09544054jem2055

    Article  Google Scholar 

  164. Abhilash PM, Chakradhar D (2021) Image processing algorithm for detection, quantification and classification of microdefects in wire electric discharge machined precision finish cut surfaces. J Micromanuf. https://doi.org/10.1177/25165984211015410

    Article  Google Scholar 

  165. Khalick Mohammad AE, Hong J, Wang D (2017) Polishing of uneven surfaces using industrial robots based on neural network and genetic algorithm. Int J Adv Manuf Technol 93:1463–1471. https://doi.org/10.1007/s00170-017-0524-6

    Article  Google Scholar 

  166. Caggiano A, Teti R, Alfieri V, Caiazzo F (2021) Automated laser polishing for surface finish enhancement of additive manufactured components for the automotive industry. Prod Eng 15:109–117. https://doi.org/10.1007/s11740-020-01007-1

    Article  Google Scholar 

  167. Johnson NS, Vulimiri PS, To AC, Zhang X, Brice CA, Kappes BB, Stebner AP (2020) Invited review: Machine learning for materials developments in metals additive manufacturing. Addit Manuf 36:101641. https://doi.org/10.1016/j.addma.2020.101641

    Article  Google Scholar 

  168. Canny J (1986) A Computational Approach to Edge Detection. IEEE Trans Pattern Anal Mach Intell 8:679–698. https://doi.org/10.1109/tpami.1986.4767851

    Article  Google Scholar 

  169. Xu P, Cheung CF, Wang C, Zhao C (2020) Novel hybrid robot and its processes for precision polishing of freeform surfaces. Precis Eng 64:53–62. https://doi.org/10.1016/j.precisioneng.2020.03.013

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afzaal Ahmed.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boban, J., Ahmed, A., Jithinraj, E.K. et al. Polishing of additive manufactured metallic components: retrospect on existing methods and future prospects. Int J Adv Manuf Technol 121, 83–125 (2022). https://doi.org/10.1007/s00170-022-09382-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-09382-y

Keywords

  • Additive manufacturing
  • Post-processing
  • Polishing
  • Surface roughness