Skip to main content
Log in

Experimental and numerical investigations of 2A16 aluminium and pure copper magnetically assisted dissimilar laser wire feed welding brazing

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Magnetic field–assisted welding has been found to have a valuable function in significantly improving properties of weld bead. This paper presents a full-factor experiment for coaxial magnetic field–assisted welding to investigate the mechanism of the influence of magnetic field on the dissimilar laser wire feed weld brazing profile of aluminium and copper. Additionally, a three-dimensional numerical simulation model was built to analyze the influence of magnetic field on the weld bead. It was found that as the magnetic flux density increased from 10 to 50 mT, the properties of the weld bead were improved significantly, the wetting angle decreased from 53 to 26°, and the main fluid flow direction of the weld bead changed into a horizontal direction. Meanwhile, EDS and XRD results showed that the main intermetallic compounds (IMC) of Al2Cu and CuZn composition changed to Al4.2Cu3.2Zn0.7 in welding beads. Computed and measured distortions illustrated good agreement in the fusion zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cheepu M, Susila P (2020) Growth rate of intermetallics in aluminum to copper dissimilar welding. Trans Indian Inst Met 73(6):1509–1514. https://doi.org/10.1007/s12666-020-01905-z

    Article  Google Scholar 

  2. Pratyusha M, Ramana PV, Prasanthi G (2020) Evaluation of tensile strength of dissimilar metal pure aluminium and pure copper friction welds. Materials Today: Proceedings 38(5):2271–2274. https://doi.org/10.1016/j.matpr.2020.06.385

    Article  Google Scholar 

  3. DebRoy T, Bhadeshia HKDH (2010) Friction stir welding of dissimilar alloys — a perspective. Sci Technol Weld Joining 15:266–270. https://doi.org/10.1179/174329310X12726496072400

    Article  Google Scholar 

  4. Galva OI, Oliveira JC, Loureiro A, Rodrigues DM (2012) Formation and distribution of brittle structures in friction stir welding of aluminium and copper: influence of shoulder geometry. Intermetallics 22(none):122–128. https://doi.org/10.1016/j.intermet.2011.10.014

  5. Hofmann K, Holzer M, Hugger F, Roth S, Schmidt M (2014) Reliable copper and aluminum connections for high power applications in electromobility. Phys Procedia 56:601–609. https://doi.org/10.1016/j.phpro.2014.08.048

    Article  Google Scholar 

  6. Muhammad NA, Wu CS (2019) Ultrasonic vibration assisted friction stir welding of aluminium alloy and pure copper. J Manuf Process 39(MAR.), 114–127.https://doi.org/10.1016/j.jmapro.2019.02.011

  7. Lipowsky H, Arpaci E (2007) Copper in the Automotive Industry. https://doi.org/10.1002/9783527611652

    Article  Google Scholar 

  8. Satpathy MP, Mishra SB, Sahoo SK (2018) Ultrasonic spot welding of aluminum-copper dissimilar metals: a study on joint strength by experimentation and machine learning techniques. J Manuf Process 33(JUN.):96–110.https://doi.org/10.1016/j.jmapro.2018.04.020

  9. Shen J, Suhuddin U, Cardillo M, Santos JD (2014) Eutectic structures in friction spot welding joint of aluminum alloy to copper. Appl Phys Lett 104(19):541–550.https://doi.org/10.1063/1.4876238

  10. Feng MN, Xie Y, Zhao CF, Luo Z (2018) Microstructure and mechanical performance of ultrasonic spot welded open-cell cu foam/al joint. J Manuf Process 33(JUN.):86–95. https://doi.org/10.1016/j.jmapro.2018.04.022

  11. Li Y, Dong Y, Fu Y, Li X (2019) Interfacial structure and mechanical properties of the explosive welded t2 copper/2024 aluminium alloy joint. Cailiao Kexue yu Gongyi/Mater Sci Technol 27(1):47–52. https://doi.org/10.11951/j.issn.1005-0299.20170295

  12. Mousavi S, Al-Hassani S, Atkins AG (2008) Bond strength of explosively welded specimens. Materials Design 29(7):1334–1352. https://doi.org/10.1016/j.matdes.2007.06.010

    Article  Google Scholar 

  13. Chowdhury ID, Sengupta K, Singh DK, Maji KK, Mondal AK (2020) Investigation of mechanical properties of dissimilar joint of 6063 aluminium and c26000 copper alloy by friction stir welding. Materials Today: Proceedings 44(6):4039–4047. https://doi.org/10.1016/j.matpr.2020.10.219

    Article  Google Scholar 

  14. Chularis AA, Rzaev RA, Syndetov MK (2021) Friction stir welding of aluminium and copper alloys. Weld Int (8):1–12. https://doi.org/10.1080/09507116.2021.1906576

  15. Ghias SA, Ramnath VB, Elanchezhian SCD, Ramanan N (2019) Analysis of the friction welding mechanism of low carbon steel-stainless steel and aluminium-copper-sciencedirect. Materials Today: Proceedings 16(P2):766–775. https://doi.org/10.1016/j.matpr.2019.05.157

    Article  Google Scholar 

  16. Panaskar N, Terkar RP (2020) Optimization of friction stir welding process parameters for aa6063-etp copper using central composite design. World Journal of Engineering, ahead-of-print(ahead-of-print). https://doi.org/10.1108/WJE-11-2019-0322

  17. Hollatz S, Heinen P, Limpert E, Olowinsky A, Gillner A (2020) Overlap joining of aluminium and copper using laser micro welding with spatial power modulation. Welding in the World, Le Soudage Dans Le Monde 64(2). https://doi.org/10.1007/s40194-020-00848-9

  18. Rasch M, Roider C, Kohl S, Strauss J, Maurer N, Nagulin KY, Schmidt M (2019) Shaped laser beam profiles for heat conduction welding of aluminium-copper alloys. Opt Lasers Eng 115(APR.):179–189. https://doi.org/10.1016/j.optlaseng.2018.11.025

  19. Yan S, Shi Y (2019) Influence of laser power on microstructure and mechanical property of laser-welded al/cu dissimilar lap joints. J Manuf Process 45(Sep.):312–321. https://doi.org/10.1016/j.jmapro.2019.07.009

  20. Reisgen U, Olschok S, Holtum N (2019) Influencing the electrical properties of laser beam vacuum-welded cu-al mixed joints. J Laser Appl 31(2):022406. https://doi.org/10.2351/1.5096093

    Article  Google Scholar 

  21. Dimatteo V, Ascari A, Fortunato A (2019) Continuous laser welding with spatial beam oscillation of dissimilar thin sheet materials (al-cu and cu-al): process optimization and characterization. J Manuf Process 44(AUG.):158–165. https://doi.org/10.1016/j.jmapro.2019.06.002

  22. Weigl M, Schmidt M (2009) Modulated laser spot welding of dissimilar copper-aluminium connections.

  23. Xu C, Peng C (2020) Mechanical properties and microstructure analysis of welding brazing of al/ti butt joint with zn foil additive. Materials Research Express 7(2):026542(11pp). https://doi.org/10.1088/2053-1591/ab5de5

  24. Katayama S (2004) Laser welding of aluminium alloys and dissimilar metals. Weld Int 18(8):618–625. https://doi.org/10.1533/wint.2004.3315

    Article  Google Scholar 

  25. Solchenbach T, Plapper P (2013) Mechanical characteristics of laser braze-welded aluminium–copper connections. Opt Laser Technol 54:249–256. https://doi.org/10.1016/j.optlastec.2013.06.003

    Article  Google Scholar 

  26. Xue J, Li Y, Hui C, Zhu Z (2017) Effects of heat input on wettability, interface microstructure and properties of al/steel butt joint in laser-metal inert-gas hybrid welding brazing. J Mater Process Technol 255:47–54. https://doi.org/10.1016/j.jmatprotec.2017.11.063

    Article  Google Scholar 

  27. Cao L, Zhou Q, Liu H, Li J, Wang S (2020) Mechanism investigation of the influence of the magnetic field on the molten pool behavior during laser welding of aluminum alloy. Int J Heat Mass Transf 162:120390. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120390

    Article  Google Scholar 

  28. Gatzen M, Tang Z (2010) Cfd-based model for melt flow in laser beam welding of aluminium with coaxial magnetic field. Phys Procedia 5(part-PB):317–326. https://doi.org/10.1016/j.phpro.2010.08.058#

  29. Wu C, Yang F, Gao J (2016) Effect of external magnetic field on weld pool flow conditions in high-speed gas metal arc welding. Proc Inst Mech Eng B J Eng Manuf 0954405414555591. https://doi.org/10.1177/0954405414555591

  30. Avilov V, Fritzsche A, Bachmann M, Gumenyuk A, Rethmeier M (2015) Full penetration laser beam welding of thick duplex steel plates with electromagnetic weld pool support. J Laser Appl 28(2):022420. https://doi.org/10.2351/1.4944103

  31. Cao L, Yang Y, Jiang P, Zhou Q, Mi G, Gao Z, Rong Y, Wang C (2017) Optimization of processing parameters of aisi-316l laser welding influenced by external magnetic field combining rbfnn and ga. Results in Physics 7:1329–1338. https://doi.org/10.1016/j.rinp.2017.03.029

    Article  Google Scholar 

  32. Fan L, Zhong Y, Xu Y, Zhe S, Ren Z (2015) Effect of static magnetic field on microstructure and interdiffusion behavior of Fe/Fe–Si alloy diffusion couple. J Alloy Compd 645:369–375. https://doi.org/10.1016/j.rinp.2017.03.029

    Article  Google Scholar 

  33. Bachmann M, Avilov V, Gumenyuk A, Rethmeier M (2014) Experimental and numerical investigation of an electromagnetic weld pool support system for high power laser beam welding of austenitic stainless steel. J Mater Process Technol 214(3):578–591. https://doi.org/10.1016/j.jmatprotec.2013.11.013

    Article  Google Scholar 

  34. Wu C, Han S, Xue D, Zhan J (2021) On the fluid behavior and stability of ti-6al-4v titanium alloy gmaw molten pool: effect of the longitudinal magnetic field. Mod Phys Lett B 35(17):2150283. https://doi.org/10.1142/S0217984921502833

    Article  MathSciNet  Google Scholar 

  35. Esfahani M, Coupland J, Marimuthu S (2015) Numerical simulation of alloy composition in dissimilar laser welding. J Mater Process Technol 224:135–142. https://doi.org/10.1016/j.jmatprotec.2015.05.005

    Article  Google Scholar 

  36. Thejasree P, Manikandan N, Binoj JS, Varaprasad KC, Raju R (2020) Numerical simulation and experimental investigation on laser beam welding of inconel 625. Materials today: proceedings. https://doi.org/10.1016/j.matpr.2020.07.042

    Article  Google Scholar 

  37. Partes K, Schmidt M, Gorny S (2020) Prediction of preheating temperatures for s690ql high strength steel using fem-simulation for high power laser welding. Lasers in Manufacturing and Materials Processing 7(2):177–189. https://doi.org/10.1007/s40516-020-00111-5

    Article  Google Scholar 

  38. Behúlová M, Babalová E, Nagy M (2017) Simulation model of Al-Ti dissimilar laser welding brazing and its experimental verification. Materials Science and Engineering Conference Series. https://doi.org/10.1088/1757-899X/179/1/012007

    Article  Google Scholar 

  39. Assael MJ, Kalyva AE, Antoniadis KD, Banish RM, Egry I, Wu J, Kaschnitz E, Wakeham WA (2010) Reference data for the density and viscosity of liquid copper and liquid tin. J Phys Chem Ref Data 39(3):285. https://doi.org/10.1063/1.3467496

    Article  Google Scholar 

  40. Phanikumar G, Chattopadhyay K, Dutta P (2004) Computational modeling of laser welding of Cu-Ni dissimilar couple. Metall Mater Trans B 35(2):339–350. https://doi.org/10.1007/s11663-004-0034-4

    Article  Google Scholar 

  41. Webb EB, Grest GS (2001) Liquid/vapor surface tension of metals: embedded atom method with charge gradient corrections. Phys Rev Lett 86(10):2066–2069. https://doi.org/10.1103/PhysRevLett.86.2066

    Article  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (grant number 51865034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-yu Xiong.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Zt., Xiong, Zy., Jiang, Sy. et al. Experimental and numerical investigations of 2A16 aluminium and pure copper magnetically assisted dissimilar laser wire feed welding brazing. Int J Adv Manuf Technol 121, 671–682 (2022). https://doi.org/10.1007/s00170-022-09348-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-09348-0

Keywords

Navigation