Skip to main content
Log in

Study on surface texture and corrosion resistance of ultrasonic vibration-assisted micromilling Inconel718

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Micromilling (MM) is favored by the field of high-precision micro parts. However, the high plasticity of Inconel718 often poses a threat to MM, such as pits, humps, and gullies, which affect the surface quality. In this study, the influence of ultrasonic vibration-assisted micromilling (UVAMM) on surface quality is comprehensively analyzed by using the machining process of workpiece vibration, combined with cutting force, tool wear, surface texture, and corrosion resistance. The results show that small amplitude plays a significant role in reducing cutting force and inhibiting tool wear. The better surface quality is obtained by optimizing cutting parameters (the cutting speed (vc) is 37.68 m/min, the feed per tooth (ƒz) is 3 μm/z, and the amplitude (A) is 6 μm), which is a uniform and regular fish scale surface with lower surface roughness and fewer surface defects. Furthermore, the application of ultrasonic vibration also significantly improves the surface corrosion resistance of Inconel718. It is worth noting that the surface corrosion resistance does not completely depend on the surface roughness, but also has a close correlation with the surface texture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Aurich JC, Reichenbach IG, Schüler GM (2012) Manufacture and application of ultra-small micro end mills. CIRP Ann - Manuf Technol 61(1):83–86. https://doi.org/10.1016/j.cirp.2012.03.012

    Article  Google Scholar 

  2. Atif M, Munish KG, Tadeusz M, Yurievich PD, Khaled G (2021) Effect of tool coating and cutting parameters on surface roughness and burr formation during micromilling of Inconel 718. Metals 11(1):1–18. https://doi.org/10.3390/MET11010167

    Article  Google Scholar 

  3. Milan B, Andrea DB, Ekrem O, Alborz S, Dirk B (2020) Experimental and computational investigations on the effects of deep-temperature emulsion on the turning of Inconel 718 alloy. CIRP J Manuf Sci Tec 31:48–60. https://doi.org/10.1016/j.cirpj.2020.10.001

    Article  Google Scholar 

  4. Wang W, Kweon SH, Yang SH (2005) A study on roughness of the micro-end-milled surface produced by a miniatured machine tool. J Mater Process Technol 162–163:702–708. https://doi.org/10.1016/j.jmatprotec.2005.02.141

    Article  Google Scholar 

  5. Lu XH, Jia ZY, Wang H, Feng YX, Liang SY (2019) The effect of cutting parameters on micro-hardness and the prediction of Vickers hardness based on a response surface methodology for micro-milling Inconel 718. Measurement 140:56–62. https://doi.org/10.1016/j.measurement.2019.03.037

    Article  Google Scholar 

  6. Mian AJ, Driver N, Mativenga PT (2011) Identification of factors that dominate size effect in micro-machining. Int J Mach Tool Manuf 51(5):383–394. https://doi.org/10.1016/j.ijmachtools.2011.01.004

    Article  Google Scholar 

  7. Oliveira DD, Gomes MC, Silva MB (2020) Influence of cutting fluid application frequency on the surface quality of micromilled slots on Inconel 718 alloy. Procedia Manuf 48:553–558. https://doi.org/10.1016/j.promfg.2020.05.082

    Article  Google Scholar 

  8. Ucun İ, Aslantaş K, Bedir F (2015) The effect of minimum quantity lubrication and cryogenic pre-cooling on cutting performance in the micro milling of Inconel 718. P I Mech Eng B-J Eng 229(12):2134–2143. https://doi.org/10.1177/0954405414546144

    Article  Google Scholar 

  9. Evgeny B, Hughes T, Eskin D (2016) Effect of surface roughness on corrosion behaviour of low carbon steel in inhibited 4 M hydrochloric acid under laminar and turbulent flow conditions. Corros Sci 103:196–205. https://doi.org/10.1016/j.corsci.2015.11.019

    Article  Google Scholar 

  10. Alvarez RB, Martin HJ, Horstemeyer MF, Chandler MQ, Williams N, Wang PT, Ruiz A (2010) Corrosion relationships as a function of time and surface roughness on a structural AE44 magnesium alloy. Corros Sci 52(5):1635–1648. https://doi.org/10.1016/j.corsci.2010.01.018

    Article  Google Scholar 

  11. Uddin MS, Rosman H, Hall C, Murphy P (2017) Enhancing the corrosion resistance of biodegradable Mg-based alloy by machining-induced surface integrity: influence of machining parameters on surface roughness and hardness. Int J Adv Manuf Technol 90(5–8):5095–5108. https://doi.org/10.1007/s00170-016-9536-x

    Article  Google Scholar 

  12. Shen XH, Zhang JH, Yin TJ, Dong CJ (2010) A study on cutting force in micro end milling with ultrasonic vibration. Adv Mater Res 905(198):1910–1914. https://doi.org/10.4028/www.scientific.net/AMR.97-101.1910

    Article  Google Scholar 

  13. Shen XH, Wang MY (2016) Finite element analysis of temperature field in vibration milling. Key Eng Mater 693:1030–1037. https://doi.org/10.4028/www.scientific.net/KEM.693.1030

    Article  Google Scholar 

  14. Chen G, Ren CZ, Zou YH, Qin XD, Lu LP, Li SP (2019) Mechanism for material removal in ultrasonic vibration helical milling of Ti6Al4V alloy. Int J Mach Tool Manuf 138:1–13. https://doi.org/10.1016/j.ijmachtools.2018.11.001

    Article  Google Scholar 

  15. Ni CB, Zhu LD, Yang ZC (2019) Comparative investigation of tool wear mechanism and corresponding machined surface characterization in feed-direction ultrasonic vibration assisted milling of Ti-6Al-4V from dynamic view. Wear 436–437:1–17. https://doi.org/10.1016/j.wear.2019.203006

    Article  Google Scholar 

  16. Gong H, Fang FZ, Hu XT (2009) Kinematic view of tool life in rotary ultrasonic side milling of hard and brittle materials. Int J Mach Tool Manuf 50(3):303–307. https://doi.org/10.1016/j.ijmachtools.2009.12.006

    Article  Google Scholar 

  17. Sajjady SA, Abadi HN, Amini S, Nosouhi R (2016) Analytical and experimental study of topography of surface texture in ultrasonic vibration assisted turning. Mater Des 93:311–323. https://doi.org/10.1016/j.matdes.2015.12.119

    Article  Google Scholar 

  18. Tao GC, Ma C, Bai LY, Shen XH, Zhang JH (2017) Feed-direction ultrasonic vibration-assisted milling surface texture formation. Mater Manuf Process 32(2):193–198. https://doi.org/10.1080/10426914.2016.1198029

    Article  Google Scholar 

  19. Zhang ML, Zhang DY, Geng DX, Shao ZY, Liu YH, Jiang XG (2019) Effects of tool vibration on surface integrity in rotary ultrasonic elliptical end milling of Ti-6Al-4V. J Alloy Compd 821:1–10. https://doi.org/10.1016/j.jallcom.2019.153266

    Article  Google Scholar 

  20. Biermann D, Kersting P, Surmann T (2010) A general approach to simulating workpiece vibrations during five-axis milling of turbine blades. CIRP Ann - Manuf Technol 59(1):125–128. https://doi.org/10.1016/j.cirp.2010.03.057

    Article  Google Scholar 

  21. Lu H, Zhu LD, Yang ZC, Yan BL, Hao YP, Qin SQ (2021) Research on the generation mechanism and interference of surface texture in ultrasonic vibration assisted milling. Int J Mech Sci 208:1–18. https://doi.org/10.1016/J.IJMECSCI.2021.106681

    Article  Google Scholar 

  22. Hsu CY, Huang CK, Wu CY (2007) Milling of MAR-M247 nickel-based superalloy with high temperature and ultrasonic aiding. Int J Adv Manuf Technol 34(9–10):857–866. https://doi.org/10.1007/s00170-006-0657-5

    Article  Google Scholar 

  23. Suárez A, Veiga F, Lacalle LN, Polvorosa R, Lutze S, Wretland A (2016) Effects of ultrasonics-assisted face milling on surface integrity and fatigue life of Ni-Alloy 718. J Mater Eng Perform 25(11):5076–5086. https://doi.org/10.1007/s11665-016-2343-6

    Article  Google Scholar 

  24. Wang Z, Kovvuri V, Araujo A, Bacci M, Hung WN, Bukkapatnam ST (2016) Built-up-edge effects on surface deterioration in micromilling processes. J Manuf Process 24:321–327. https://doi.org/10.1016/j.jmapro.2016.03.016

    Article  Google Scholar 

  25. Thiele JD, Melkote SN (1999) Effect of cutting edge geometry and workpiece hardness on surface generation in the finish hard turning of AISI 52100 steel. J Mater Process Technol 94:216–226. https://doi.org/10.1016/S0924-0136(99)00111-9

    Article  Google Scholar 

  26. Zhu LD, Ni CB, Yang ZC, Liu CF (2019) Investigations of micro-textured surface generation mechanism and tribological properties in ultrasonic vibration-assisted milling of Ti–6Al–4V. Precis Eng 57:229–243. https://doi.org/10.1016/j.precisioneng.2019.04.010

    Article  Google Scholar 

  27. Cheng YN, Xu M, Guan R, Liu L, Qian J (2017) Generation mechanism of insert residual stress while cutting 508III steel. Int J Adv Manuf Technol 91(1–4):247–255. https://doi.org/10.1007/s00170-016-9724-8

    Article  Google Scholar 

  28. Saoubi RM, Outeiro JC, Chandrasekaran H, Dillon OW Jr, Jawahir IS (2008) A review of surface integrity in machining and its impact on functional performance and life of machined products. Int J Sus Manuf 1(1–2):203–236. https://doi.org/10.1504/IJSM.2008.019234

    Article  Google Scholar 

  29. Zuo Y, Wang HT, Xiong JP (2002) The aspect ratio of surface grooves and metastable pitting of stainless steel. Corros Sci 44(1):25–35. https://doi.org/10.1016/S0010-938X(01)00039-7

    Article  Google Scholar 

  30. Huang J, Li Z, Liaw BY, Zhang JB (2016) Graphical analysis of electrochemical impedance spectroscopy data in Bode and Nyquist representations. J Power Sources 309:82–98. https://doi.org/10.1016/j.jpowsour.2016.01.073

    Article  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (52075275), Agricultural Key Applied Project of China (SD2019NJ015), Chuzhou Science and Technology Bureau Foundation of China (2020ZG004), and Tongling Science and Technology Bureau Foundation of China (20200101005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yude Dong.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Z., Fang, B., Dong, Y. et al. Study on surface texture and corrosion resistance of ultrasonic vibration-assisted micromilling Inconel718. Int J Adv Manuf Technol 121, 601–618 (2022). https://doi.org/10.1007/s00170-022-09292-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-09292-z

Keywords

Navigation