Skip to main content
Log in

Research advances in joining processes of sapphire

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Sapphire has been widely used in military and civil fields because of its excellent physical and chemical properties. However, the existing technology cannot achieve the preparation of large sapphire. Therefore, effective bonding of sapphire is the method to expand its application. In this paper, the main bonding methods of sapphire in recent years are reviewed, and the research progress of diffusion welding and brazing are introduced in detail. The advantages and disadvantages of the two bonding methods are discussed. The two core problems of interface bonding and residual stress in sapphire bonding are put forward. The effects of different process parameters on sapphire bonding, interface bonding mechanism and reaction kinetics were summarized. Finally, some suggestions on the development of sapphire bonding and the contents that should be paid attention to in the future are put forward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Availability of data and materials

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

References

  1. Azhdari A, Nemat-Nasser S, Rome J (1998) Experimental observations and computational modeling of fracturing in an anisotropic brittle crystal (sapphire). Int J Fract 94(3):251–266

  2. Fiore D, Gentilman R, Mcguire P, Katz R (2022) Fracture strength of large area, edge‐bonded sapphire. In 26th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures: A: Ceramic Engineering and Science Proceedings. Wiley Online Library, pp 817–824

  3. Trunec M, Klimke J, Shen ZJ (2016) Transparent alumina ceramics densified by a combinational approach of spark plasma sintering and hot isostatic pressing. J Eur Ceram Soc 36(16):4333–4337

  4. Chen Z, Chang H, Cheng T, Wei T, Wang R, Yang S, Dou Z, Liu B, Zhang S, Xie Y, Liu Z, Zhang Y, Li J, Ding F, Gao P, Liu Z (2020) Direct growth of nanopatterned graphene on sapphire and its application in light emitting diodes. Adv Funct Mater 30(31). https://doi.org/10.1002/adfm.202001483

  5. Schmid F, Smith MB, Khattak CP (1994) Current status of sapphire dome production. In: Window and dome technologies and materials IV. Int Soc Opt Photonics 2–15

  6. Khattak CP, Shetty R, Schwerdtfeger CR, Ullal S (2016) World’s largest sapphire for many applications. J Cryst Growth 452:44–48. https://doi.org/10.1016/j.jcrysgro.2015.11.026

    Article  Google Scholar 

  7. Royter Y, Furuta T, Ksdama S, Sahri N, Nagatsuma T, Ishibashi T (2000) Integrated packaging of over 100 GHz bandwidth uni-traveling-carrier photodiodes. IEEE Electron Device Lett 21(4):158–160

    Article  Google Scholar 

  8. Lin K-L, Singh M, Asthana R (2014) Interfacial characterization of alumina-to-alumina joints fabricated using silver–copper–titanium interlayers. Mater Charact 90:40–51. https://doi.org/10.1016/j.matchar.2014.01.009

    Article  Google Scholar 

  9. Peng X, Shimai S, Sun Y, Zhou G, Wang S (2015) Wet green‐state joining of alumina ceramics without paste. J Am Ceram Soc 98(9):2728–2731

  10. Rijnders M, Peteves S (1999) Joining of alumina using a V-active filler metal. Scr Mater 41(10):1137–1146

    Article  Google Scholar 

  11. Sun C, Xue D (2013) Single crystal growth mechanism of sapphire. Mater Technol 28(5):286–289

    Article  Google Scholar 

  12. Harris DC (1995) Frontiers in infrared window and dome materials. In: Infrared technology XXI. Int Soc Opt Photonics 325–335

  13. Dillon SJ, Harmer MP (2007) Mechanism of “solid‐state” single‐crystal conversion in alumina. J Am Ceram Soc 90(3):993–995

  14. Pazol BG, McGuire PT, Gentilman RL, Locher JW, Askinazi J (2000) Large-area flat and curved sapphire window blanks. In: Inorganic optical materials II. Int Soc Opt Photonics 52–58

  15. Liu W, Elssner G, Rühle M (2001) Effects of thin film Nb interlayer in Cu/sapphire bonds. Mater Sci Eng A 317(1–2):153–162

    Article  Google Scholar 

  16. MacDonald W, Eagar T (1992) Transient liquid phase bonding. Ann Rev Mater Sci 22(1):23–46

    Article  Google Scholar 

  17. Cui W, Li S, Yan J, He J, Liu Y (2015) Ultrasonic-assisted brazing of sapphire with high strength Al–4.5Cu–1.5Mg alloy. Ceram Int 41(6):8014–8022. https://doi.org/10.1016/j.ceramint.2015.02.149

  18. Lin P, Lin T, He P, Guo W, Wang J (2015) Investigation of microstructure and mechanical property of Li–Ti ferrite/Bi2O3–B2O3–SiO2 glass/Li–Ti ferrite joints reinforced by FeBi5Ti3O15 whiskers. J Eur Ceram Soc 35(9):2453–2459

    Article  Google Scholar 

  19. Marks RA, Chapman DR, Danielson DT, Glaeser AM (2000) Joining of alumina via copper/niobium/copper interlayers. Acta Mater 48(18–19):4425–4438

    Article  Google Scholar 

  20. Sugar JD, McKeown JT, Marks RA, Glaeser AM (2002) Liquid-film-assisted formation of alumina/niobium interfaces. J Am Ceram Soc 85(10):2523–2530

    Article  Google Scholar 

  21. Louet N, Reveron H, Fantozzi G (2008) Sintering behaviour and microstructural evolution of ultrapure α-alumina containing low amounts of SiO2. J Eur Ceram Soc 28(1):205–215

    Article  Google Scholar 

  22. Shalz M, Dalgleish B, Tomsia A, Cannon R, Glaeser A (1994) Ceramic joining III bonding of alumina via Cu/Nb/Cu interlayers. J Mater Sci 29(14):3678–3690

    Article  Google Scholar 

  23. Hong SM, Bartlow CC, Reynolds TB, McKeown JT, Glaeser A (2008) Ultrarapid transient-liquid-phase bonding of Al2O3 ceramics. Adv Sci Technol 20(24):4799–4803

    Google Scholar 

  24. Akselsen OM (1992) Diffusion bonding of ceramics. J Mater Sci 27(3):569–579

    Article  Google Scholar 

  25. Yu Z, Liang C, Li R, Wu M, Qi K (2004) Bonding of Al~ 2O~ 3 ceramic and Nb using transient liquid phase brazing. Trans Nonferrous Metal Soc China Ed14(1):99–104

  26. Scheu C, Liu Y, Oh SH, Brunner D, Rühle M (2006) Interface structure and strain development during compression tests of Al2O3/Nb/Al2O3 sandwiches. J Mater Sci 41(23):7798–7807. https://doi.org/10.1007/s10853-006-0728-x

    Article  Google Scholar 

  27. Zeng L, Case ED, Crimp MA (2003) The interfacial microstructure of joined single crystal and polycrystalline alumina. Mater Sci Eng, A 360(1–2):228–236. https://doi.org/10.1016/s0921-5093(03)00441-6

    Article  Google Scholar 

  28. Chang L, Huang C (2004) Transient liquid phase bonding of alumina to alumina via boron oxide interlayer. Ceram Int 30(8):2121–2127

    Article  Google Scholar 

  29. Sinnott SB, Dickey EC (2003) Ceramic/metal interface structures and their relationship to atomic-and meso-scale properties. Mater Sci Eng R Rep 43(1–2):1–59

    Article  Google Scholar 

  30. Soyez G, Elssner G, Rühle M, Raj R (1998) Constrained yielding in niobium single crystals bonded to sapphire. Acta Mater 46(10):3571–3581

    Article  Google Scholar 

  31. Soyez G, Elssner G, Rühle M, Raj R (2000) Crack formation in sapphire/niobium/sapphire joints under compression. J Mater Sci 35(5):1087–1096

    Article  Google Scholar 

  32. Sugar JD, McKeown JT, Akashi T, Hong SM, Nakashima K, Glaeser AM (2006) Transient-liquid-phase and liquid-film-assisted joining of ceramics. J Eur Ceram Soc 26(4–5):363–372

    Article  Google Scholar 

  33. Marks RA, Sugar JD, Glaeser AM (2001) Ceramic joining IV. Effects of processing conditions on the properties of alumina joined via Cu/Nb/Cu interlayers. J Mater Sci 36(23):5609–5624

    Article  Google Scholar 

  34. Suganuma K, Saiz E, Tomsia AP (1998) Microstructure and strength of interface between pure aluminum and α-alumina. J Japan Inst Metals 62(1):92–97

    Article  Google Scholar 

  35. Saiz E, Cannon R, Tomsia A (2000) Reactive spreading: adsorption, ridging and compound formation. Acta Mater 48(18–19):4449–4462

    Article  Google Scholar 

  36. Saiz E, Tomsia AP, Suganuma K (2003) Wetting and strength issues at Al/α–alumina interfaces. J Eur Ceram Soc 23(15):2787–2796. https://doi.org/10.1016/s0955-2219(03)00290-5

    Article  Google Scholar 

  37. Ott J, Michal G, Chottiner O (1989) Shear strength of aluminum-sapphire interfaces. Mater Lett 8(11–12):481–485

    Article  Google Scholar 

  38. Akatsu T, Sasaki G, Hosoda N, Suga T (1997) Microstructure and strength of Al-sapphire interface by means of the surface activated bonding method. J Mater Res 12(3):852–856

    Article  Google Scholar 

  39. Klomp J (1984) Ceramic and metal surfaces in ceramic-to-metal bonding. Proc Br Ceram Soc 34:249

  40. Montesa CM, Shibata N, Choi S-Y, Tonomura H, Akiyama K, Kuromitsu Y, Ikuhara Y (2009) High-resolution transmission electron microscopy observation of liquid-phase bonded aluminum/sapphire interfaces. Mater Trans 50(5):1037–1040. https://doi.org/10.2320/matertrans.MC200810

    Article  Google Scholar 

  41. Kohno A, Yamada T, Yokoi K (1985) Bonding of ceramics to metals with interlayers of Al-Si clad aluminium. Nippon Kinzoku Gakkaishi 49

  42. Ferkel H, Riehemann W (1996) Bonding of alumina ceramics with nanoscaled alumina powders. Nanostruct Mater 7(8):835–845

  43. Ikegami T, Kotani K, Eguchi K (1987) Some roles of MgO and TiO2 in densification of a sinterable alumina. J Am Ceram Soc 70(12):885–890

    Article  Google Scholar 

  44. Fukushima H, Yamanaka T, Matsui M (1990) Microwave heating of ceramics and its application to joining. J Mater Res 5(2):397–405

    Article  Google Scholar 

  45. Zhang L, Xing D, Sun J, Zuo H, Wang T, Han J (2011) Bonding layer microstructures and mechanical behavior of sapphire/sapphire joints diffusion-bonded using MgO-Al2O3-SiO2 interlayer. Int J Appl Ceram Technol 8(5):1183–1191. https://doi.org/10.1111/j.1744-7402.2010.02557.x

    Article  Google Scholar 

  46. Morozumi S, Kikuchi M, Nishino T (1981) Bonding mechanism between alumina and niobium. J Mater Sci 16(8):2137–2144

    Article  Google Scholar 

  47. Schmid F, Khattak CP (1989) Current status of sapphire technology for window and dome applications. In Window and dome technologies and materials. Int Soc Opt Photonics 25–30

  48. McGuire PT, Pazol BG, Gentilman RL, Askinazi J, Locher JW (2001) Large-area edge-bonded flat and curved sapphire windows. In Window and dome technologies and materials VII. Int Soc Opt Photonics 12–19

  49. Gentilman RL, McGuire PT, Pazol BG, Askinazi J, Steindl R, Locher JW (1999) High-strength edge-bonded sapphire windows. In: Window and dome technologies and materials VI. Int Soc Opt Photonics 282–287

  50. Gentilman RL, McGuire PT, Fiore D, Ostreicher K, Askinazi J (2003) Large-area sapphire windows. In Window and dome technologies VIII. Int Soc Opt Photonics 54–60

  51. LaBelle H Jr (1980) EFG, the invention and application to sapphire growth. J Cryst Growth 50(1):8–17

  52. Zaharinie T, Yusof F, Fadzil M, Hamdi M, Ariga T (2014) Microstructural analysis of brazing sapphire and Inconel 600 for sensor applications. Mater Res Innov 18(sup6):S6–68-S66–72. https://doi.org/10.1179/1432891714z.000000000934

  53. Mandal S, Ray AK, Ray AK (2004) Correlation between the mechanical properties and the microstructural behaviour of Al2O3–(Ag–Cu–Ti) brazed joints. Mater Sci Eng 383(2):235–244

    Article  Google Scholar 

  54. Donner K, Gaertner F, Klassen T (2011) Metallization of thin Al2O3 layers in power electronics using cold gas spraying. J Therm Spray Technol 20(1):299–306

    Article  Google Scholar 

  55. Xin C, Liu W, Li N, Yan J, Shi S (2016) Metallization of Al2O3 ceramic by magnetron sputtering Ti/Mo bilayer thin films for robust brazing to Kovar alloy. Ceram Int 42(8):9599–9604

    Article  Google Scholar 

  56. He P, Yang M, Lin T, Jiao Z (2011) Improving the strength of brazed joints with in situ synthesized TiB whiskers. J Alloys Compd 509(29):L289–L292

    Article  Google Scholar 

  57. Brochu M, Pugh M, Drew R (2004) Brazing silicon nitride to an iron-based intermetallic using a copper interlayer. Ceram Int 30(6):901–910

    Article  Google Scholar 

  58. Blugan G, Kuebler J, Bissig V, Janczak-Rusch J (2007) Brazing of silicon nitride ceramic composite to steel using SiC-particle-reinforced active brazing alloy. Ceram Int 33(6):1033–1039

    Article  Google Scholar 

  59. Paiva O, Barbosa M (2000) Brazing parameters determine the degradation and mechanical behaviour of alumina/titanium brazed joints. J Mater Sci 35(5):1165–1175

    Article  Google Scholar 

  60. Zhang Y, Gao Y, Huang Y, Jin H, Gao X (2016) Study of a new technique for improving strength of brazing joint of sapphire microwave window. In 2016 IEEE International Vacuum Electronics Conference (IVEC) 1–2

  61. Xin C, Li N, Yan J (2017) Microstructural evolution in the braze joint of sapphire to Kovar alloy by Ti-Cu metallization layer. J Mater Process Technol 248:115–122. https://doi.org/10.1016/j.jmatprotec.2017.05.016

    Article  Google Scholar 

  62. Voytovych R, Ljungberg LY, Eustathopoulos N (2004) The role of adsorption and reaction in wetting in the CuAg–Ti/alumina system. Scripta Mater 51(5):431–435. https://doi.org/10.1016/j.scriptamat.2004.05.002

    Article  Google Scholar 

  63. Kozlova O, Voytovych R, Eustathopoulos N (2011) Initial stages of wetting of alumina by reactive CuAgTi alloys. Scr Mater 65(1):13–16

    Article  Google Scholar 

  64. Voytovych R, Robaut F, Eustathopoulos N (2006) The relation between wetting and interfacial chemistry in the CuAgTi/alumina system. Acta Mater 54(8):2205–2214. https://doi.org/10.1016/j.actamat.2005.11.048

    Article  Google Scholar 

  65. Gremillard L, Saiz E, Radmilovic VR, Tomsia AP (2011) Role of titanium on the reactive spreading of lead-free solders on alumina. J Mater Res 21(12):3222–3233. https://doi.org/10.1557/jmr.2006.0393

    Article  Google Scholar 

  66. Ali M, Knowles KM, Mallinson PM, Fernie JA (2016) Interfacial reactions between sapphire and Ag–Cu–Ti-based active braze alloys. Acta Mater 103:859–869. https://doi.org/10.1016/j.actamat.2015.11.019

    Article  Google Scholar 

  67. Stephens J, Hosking F, Headley T, Hlava P, Yost F (2003) Reaction layers and mechanisms for a Ti-activated braze on sapphire. Metall Mater Trans A 34(12):2963–2972

    Article  Google Scholar 

  68. Li C, Jacques S, Chen Y, Daisenberger D, Xiao P, Markocsan N, Nylen P, Cernik R (2016) A synchrotron X-ray diffraction deconvolution method for the measurement of residual stress in thermal barrier coatings as a function of depth. J Appl Crystallogr 49(6):1904–1911

    Article  Google Scholar 

  69. Zhao X, Xiao P (2006) Residual stresses in thermal barrier coatings measured by photoluminescence piezospectroscopy and indentation technique. Surf Coat Technol 201(3–4):1124–1131

    Article  Google Scholar 

  70. Li C, Si X, Chen L, Qi J, Liu Z, Huang Y, Dong Z, Feng J, Cao J (2019) Non-destructive measurement of residual stress distribution as a function of depth in sapphire/Ti6Al4V brazing joint via Raman spectra. Ceram Int 45(3):3284–3289. https://doi.org/10.1016/j.ceramint.2018.10.237

    Article  Google Scholar 

  71. Ju L, Notcutt M, Blair D, Bondu F, Zhao C (1996) Sapphire beamsplitters and test masses for advanced laser interferometer gravitational wave detectors. Phys Lett A 218(3–6):197–206

    Article  Google Scholar 

  72. Lin C, Chen R, Shiue R (2001) A wettability study of Cu/Sn/Ti active braze alloys on alumina. J Mater Sci 36(9):2145–2150

    Article  Google Scholar 

  73. Ali M, Knowles KM, Mallinson PM, Fernie JA (2015) Microstructural evolution and characterisation of interfacial phases in Al 2 O 3 /Ag–Cu–Ti/Al 2 O 3 braze joints. Acta Mater 96:143–158. https://doi.org/10.1016/j.actamat.2015.05.048

    Article  Google Scholar 

  74. Mavoori H, Ramirez AG, Jin S (2001) Universal solders for direct and powerful bonding on semiconductors, diamond, and optical materials. Appl Phys Lett 78(19):2976–2978

    Article  Google Scholar 

  75. Gremillard L, Saiz E, Chevalier J, Tomsia AP (2004) Wetting and strength in the tin-silver-titanium/sapphire system. Int J Mater Res 95(4):261–265

    Google Scholar 

  76. Mu D, Feng K, Lin Q, Huang H (2019) Low-temperature wetting of sapphire using Sn–Ti active solder alloys. Ceram Int 45(17):22175–22182. https://doi.org/10.1016/j.ceramint.2019.07.239

    Article  Google Scholar 

  77. Feng KY, Mu DK, Liao XJ, Huang H, Xu XP (2018) Brazing sapphire/sapphire and sapphire/copper sandwich joints using Sn-Ag-Ti active solder alloy. Solid State Phenom 273:187–193. https://doi.org/10.4028/www.scientific.net/SSP.273.187

    Article  Google Scholar 

  78. Cheng L, Li G, Li Z, Wu Z, Zhou B (2015) Effects of titanium on active bonding between Sn3. 5Ag4Ti (Ce, Ga) alloy filler and alumina. J Mater Sci Mater Electr 26(8):6004–6012

    Article  Google Scholar 

  79. Naka M, Hafez K (2003) Applying of ultrasonic waves on brazing of alumina to copper using Zn-Al filler alloy. J Mater Sci 38(16):3491–3494

    Article  Google Scholar 

  80. Chang S, Chuang T, Yang C (2007) Low temperature bonding of alumina/alumina and alumina/copper in air using Sn3. 5Ag4Ti (Ce, Ga) filler. J Electr Mater 36(9):1193–1198

    Article  Google Scholar 

  81. Tamura S, Tsunekawa Y, Okumiya M, Hatakeyama M (2008) Ultrasonic cavitation treatment for soldering on Zr-based bulk metallic glass. J Mater Process Technol 206(1–3):322–327

    Article  Google Scholar 

  82. Lanin V (2001) Ultrasonic soldering in electronic. Ultrason Sonochem 8(4):379–385

    Article  Google Scholar 

  83. Xu Y, Ma X, Tang H, Yan J (2020) Mechanism of the interfacial reaction between sapphire and Sn-3.5Ag-4Ti solder at a low temperature in air by ultrasound. Ceram Int 46(4):4435–4443. https://doi.org/10.1016/j.ceramint.2019.10.169

    Article  Google Scholar 

  84. Ji H, Cheng X, Li M (2016) Ultrafast ultrasonic-assisted joining of bare α-alumina ceramics through reaction wetting by aluminum filler in air. J Eur Ceram Soc 36(16):4339–4344

    Article  Google Scholar 

  85. Xu Y, Ma X, Xiu Z, Yan J (2021) Bonding and strengthening mechanism on ultrasonic-assisted soldering of sapphire using Sn-3.5Ag-4Al solder. J Mater Process Technol. https://doi.org/10.1016/j.jmatprotec.2020.116893

    Article  Google Scholar 

  86. Cui W, Yan J, Dai Y, Li D (2015) Building a nano-crystalline alpha-alumina layer at a liquid metal/sapphire interface by ultrasound. Ultrason Sonochem 22:108–112. https://doi.org/10.1016/j.ultsonch.2014.05.008

    Article  Google Scholar 

  87. Xu Y, Ma X, Yan J (2019) Evolution of interfacial structures and mechanical performance of sapphire and Sn–9Zn–2Al joints by ultrasound. Int J Appl Ceram Technol 16(6):2254–2264. https://doi.org/10.1111/ijac.13324

    Article  Google Scholar 

  88. Klinter AJ, Mendoza-Suarez G, Drew RA (2008) Wetting of pure aluminum and selected alloys on polycrystalline alumina and sapphire. Mater Sci Eng 495(1–2):147–152

    Article  Google Scholar 

  89. Oh SH, Kauffmann Y, Scheu C, Kaplan WD, Rühle MJS (2005) Ordered liquid aluminum at the interface with sapphire. Science 310(5748):661–663

    Article  Google Scholar 

  90. Aguilar-Santillan J (2009) Wetting of Al/sapphire (0001) system: measurement effect and affecting factors. Metall Mater Trans A 40(3):376–387

    Article  Google Scholar 

  91. Klinter AJ, Leon-Patiño CA, Drew RA (2010) Wetting phenomena of Al–Cu alloys on sapphire below 800 °C. Acta Mater 58(4):1350–1360

    Article  Google Scholar 

  92. Cui W, Wang C, Yan J, Wang Z, Wei D (2013) Wetting and reaction promoted by ultrasound between sapphire and liquid Al-12Si alloy. Ultrason Sonochem 20(1):196–201. https://doi.org/10.1016/j.ultsonch.2012.07.015

    Article  Google Scholar 

  93. Cui W, Li S, Yan J, Zhang X (2018) Microstructure and mechanical performance of composite joints of sapphire by ultrasonic-assisted brazing. J Mater Process Technol 257:1–6. https://doi.org/10.1016/j.jmatprotec.2018.02.011

    Article  Google Scholar 

  94. Sun Z, Chen X, Mao Y, Zhang LX, Feng JC (2020) Joining of SiC ceramics using CaO-Al2O3-SiO2 (CAS) glass ceramics. J Eur Ceram Soc 40(2):267–275. https://doi.org/10.1016/j.jeurceramsoc.2019.09.030

    Article  Google Scholar 

  95. Döhler F, Kasch S, Schmidt T, Rüssel C (2016) Sealing of alumina using a CO2 laser and a rapidly crystallizing glass. J Mater Process Technol 233:206–211. https://doi.org/10.1016/j.jmatprotec.2016.02.020

    Article  Google Scholar 

  96. Saiz E, Tomsia AP (2003) Joining of single-crystal sapphire to alumina using silicate glasses. J Ceram Soc Jpn 111(1295):448–451

    Article  Google Scholar 

  97. Guo W, Lin T, He P, Sekulic DP, Sun Z, Lin P, Shan X, Feng G, Wu B, Wang M (2017) Microstructure and characterization of interfacial phases of sapphire/sapphire joint bonded using Bi2O3–B2O3–ZnO glass. J Eur Ceram Soc 37(3):1073–1081. https://doi.org/10.1016/j.jeurceramsoc.2016.10.010

    Article  Google Scholar 

  98. Guo W, Wang T, Lin T, Guo S, He P (2018) Bismuth borate zinc glass braze for bonding sapphire in air. Mater Charact 137:67–76. https://doi.org/10.1016/j.matchar.2018.01.002

    Article  Google Scholar 

  99. Zawadzki M, Wrzyszcz J (2000) Hydrothermal synthesis of nanoporous zinc aluminate with high surface area. Mater Res Bull 35(1):109–114

    Article  Google Scholar 

  100. Kong L, Yin X, Ye F, Li Q, Zhang L, Cheng L (2013) Electromagnetic wave absorption properties of ZnO-based materials modified with ZnAl2O4 nanograins. J Phys Chem 117(5):2135–2146

    Google Scholar 

  101. Guo W, Fu L, Lin T, He P, Wang C, Wang T, Liu H (2019) New design of sapphire joints brazed with bismuth-borate glass. Ceram Int 45(4):5036–5049. https://doi.org/10.1016/j.ceramint.2018.11.205

    Article  Google Scholar 

  102. Guo W, Wang T, Lin T, He P (2018) Bonding sapphire in air by using Bi2O3–B2O3 glass braze. Mater Lett 210:117–120. https://doi.org/10.1016/j.matlet.2017.09.019

    Article  Google Scholar 

  103. Guo W, Lin T, He P (2021) Microstructure and mechanical property of sapphire joints reinforced byAl4B2O9 whiskers. J Market Res 12:739–748. https://doi.org/10.1016/j.jmrt.2021.03.042

    Article  Google Scholar 

  104. Guo W, Hou J, Wan M, Fu L, Lin T, He P (2021) Microstructural evolution, mechanical properties, and FEM analysis of the residual stress of sapphire joints brazed with a novel borate glass. Ceram Int 47(5):6699–6710. https://doi.org/10.1016/j.ceramint.2020.11.010

    Article  Google Scholar 

  105. Wu B, Guo W, He J, Xiu Z, Yan J (2018) Microstructure evolution of SiC/SiC joints during ultrasonic-assisted air bonding using a Sn–Zn–Al alloy. Ceram Int 44(2):1284–1290

    Article  Google Scholar 

  106. Luan T, Guo W, Yang S, Ma Z, He J, Yan J (2017) Effect of intermetallic compounds on mechanical properties of copper joints ultrasonic-soldered with Sn-Zn alloy. J Mater Process Technol 248:123–129

    Article  Google Scholar 

  107. Lu Y, Zhu S, Zhao Z, Chen T, Yan J (2020) Numerical simulation of residual stresses in aluminum alloy welded joints. J Manuf Process 50:380–393

    Article  Google Scholar 

  108. Shahani AR, Shakeri I, Rans CD (2020) Effect of residual stress redistribution and weld reinforcement geometry on fatigue crack growth of butt welded joints. Int J Fatigue 139:105780

Download references

Funding

This research work is supported by Huxiang High-Level Talent Gathering Project of Hunan Province (Grant No. 2021RC5001).

Author information

Authors and Affiliations

Authors

Contributions

Chao Chen and Linzhe He analyzed the data; Yuxiang Li and Ruixiang Yi contributed reagents/materials/analysis tools; Linzhe He, Chao Chen and Haijun Li wrote the paper.

Corresponding author

Correspondence to Chao Chen.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, L., Chen, C., Li, H. et al. Research advances in joining processes of sapphire. Int J Adv Manuf Technol 121, 59–81 (2022). https://doi.org/10.1007/s00170-022-09199-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-09199-9

Keywords

Navigation