Skip to main content
Log in

Material properties and machining characteristics under high strain rate in ultra-precision and ultra-high-speed machining process: a review

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

High strain rate can be produced in many manufacturing processes, such as ultra-high-speed machining and ultra-precision machining. This paper reviews the high strain rate generated in different machining processes. Molecular dynamics (MD) and finite element (FE) for studying the mechanism and characteristics in manufacturing processes are analyzed; the ductile–brittle transition (DBT) and brittle-ductile transition (BDT) under high strain rate are also reviewed. And the machining characteristics in ultra-high-speed cutting and ultra-precision cutting are analyzed and compared, including cutting force, cutting heat, machined surface quality, tool wear, and chip formation. It is proposed that the DBT under high strain rate in ultra-high-speed machining is contradictory with the BDT in ultra-precision machining, because the reasons for producing a high strain rate are different. By increasing the cutting speed vc in ultra-precision cutting appropriately, the machinability of softer materials may be increased, and surface and subsurface damage can be reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

Abbreviations

v c :

Cutting speed or grinding speed

a p :

Depth of cut or grinding depth

f :

Feed rate

ε(t) :

Strain

\(\dot{\varepsilon }\) (t) :

Strain rate

σ(t) :

Stress

\({\varepsilon }_{R}\) :

Pulse strain amplitudes of the reflected waves

\({\varepsilon }_{T}\) :

Pulse strain amplitudes of the transmitted waves

A s :

Cross-sectional area of the specimen

L :

Length of the specimen

A 0 :

Cross-sectional area of the incident bar

E :

Young’s modulus of the specimen

C 0 :

Velocity of the elastic wave in the incident bar

\(\tilde{\sigma }\) :

Equivalent flow stress

\({\overline{\varepsilon }}_{n}\) :

Equivalent plastic strain

\(\dot{\overline{\varepsilon }}\) :

Equivalent strain rate

\({\overline{\varepsilon }}_{0}\) :

Reference strain rate

T :

Current material temperature

T m :

Material melting temperature

T r :

Room temperature

A :

Initial yield strength

B :

Strain hardening modulus

N :

Strain hardening index

C :

Strain rate hardening index

m :

Heat softening index

φ :

Shear angle

γ 0 :

Rake angle

C 1 :

Cutting layer parameter

v p :

Plastic wave propagation speed

K I :

Stress intensity

K C :

Fracture toughness

Ra:

Surface roughness

BDT:

Brittle-ductile transition

DBT:

Ductile-brittle transition

DRM:

Ductile removal mode

SPHB:

Split Hopkinson pressure Bar

JC:

Johnson–Cook

MD:

Molecular dynamics

FE:

Finite element

FEM:

Finite element model

FEA:

Finite element analysis

MJC:

Modified Johnson–Cook constitutive model

CPFE:

Crystal plasticity finite element model

DDD:

Discrete dislocation dynamics

DD:

Physical fundamental phenomenological dislocation dynamics

SPDT:

Single-point diamond turning

FCC:

Face-centered cubic

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

TDUC:

Dry ultra-precision cutting technology

UEVC:

Ultrasonic elliptical vibration-assisted cutting technology

UDUC:

Dry ultra-precision cutting combined with ultrasonic elliptical vibration-assisted cutting technology

SCD:

Single-crystal diamond

References

  1. Salomon C (1931) Process for machining metals of similar acting materials when being worked by cutting tools. DE patent 523594

  2. Ai X, Liu Z, Huang C, Deng J, Zhao J (2002) Synthetic technology research on high speed cutting. Aeronaut Manuf Technol 3:20–23

    Google Scholar 

  3. Cai G, Zhao H, Gao X (2004) High speed and high efficiency grinding process and its key technologies. Manuf Technol Mach Tool 11:42–45

    Google Scholar 

  4. Cai G, Xiu S (2007) Key technology and equipment of super-high speed grinding. World Manuf Eng Market 95–99

  5. Li T, Liu Z, Wang X (2008) Study on machinability of PCBN tool in high-speed machining of titanium alloy. Tool Eng 24–27

  6. Wang B, Liu Z, Su G, Ai X (2015) Brittle removal mechanism of ductile materials with ultra-high speed machining. J Manuf Sci Eng 137

  7. Wang B, Liu Z, Song Q, Wan Y, Shi Z (2016) Proper selection of cutting parameters and cutting tool angle to lower the specific cutting energy during high speed machining of 7050–T7451 aluminum alloy. J Clean Prod 129:292–304

    Article  Google Scholar 

  8. Zhao H, Cai G (2004) Model establishment and mechanism research of chip-formation due to shock under ultra-high speed grinding. China Mech Eng 15:1038–1041

    Google Scholar 

  9. Zhao H, Gao X, Cai G (2006) Experimental study on chip formation mechanism due to shock of ultra-high speed grinding. Chin J Mech Eng 42:43–47

    Article  Google Scholar 

  10. Zhao H, Cai G, Gao X (2006) Study on grinding mechanism of ultra–high speed shock grinding of natural marble. China Mech Eng 17:677–680

    Google Scholar 

  11. Sheng X, Tang K, Yu J, Mi H, Chen T (2008) Process test research on TC4 titanium alloy in ultra-high speed grinding. J Hunan Univ Nat Sci 35:28–32

    Google Scholar 

  12. Yuan J, Wang Z, Wen D, Lu B, Dai Y (2007) Review of the current situation of ultra-precision machining. Chin J Mech Eng 43:35–48

    Article  Google Scholar 

  13. Yuan J, Lyu B, Hang W, Deng Q (2017) Review on the progress of ultra-precision machining technologies. Front Mech Eng 12:158–180

    Article  Google Scholar 

  14. Wang B, Liu Z, Song Q, Wan Y, Ren X (2020) An approach for reducing cutting energy consumption with ultra-high speed machining of super alloy Inconel 718. Int J Precis Eng Manuf Green Technol 7:35–51

    Article  Google Scholar 

  15. Zhang XQ, Yao XH, Yang GT, Huang XQ (2006) Dynamic mechanical properties of Al_2O_3 ceramics under higher strain-rate. J Taiyuan Univ Technol

  16. Zhao F, Li Y, Suo T, Huang W, Liu J (2009) Dynamic compressive behavior and damage mechanism of cast magnesium alloy AZ91. Chin J Nonferrous Met 19:1163–1168

    Google Scholar 

  17. Kong J, Chen H, He N, Li L, Jiang F (2014) Dynamic mechanical property tests and constitutive model of pure iron material. Acta Aeronaut Astronaut Sin 35:2063–2071

    Google Scholar 

  18. Zhang KG, Liu Y, Wang YG (2018) Strain rate on material deformation in high speed metal cutting process. Acta Aeronaut Astronaut Sin 39:263–269

    Google Scholar 

  19. Leiber CO (1977) Basic differences between dynamic and static high-pressure effects. High Temp High Pressures 9:573–574

    Google Scholar 

  20. Cai Y (2017) Microscopic mechanisms of deformation and phase transition under high-strain-rate-loading. University of Science and Technology of China

    Google Scholar 

  21. Duan CZ, Wang MJ, Pang JZ, Li GH (2006) A calculational model of shear strain and strain rate within shear band in a serrated chip formed during high speed machining. J Mater Process Tech 178:274–277

    Article  Google Scholar 

  22. Li C, Ding Y, Lu B (2009) Development and key technology in high speed cutting. J Qingdao Technol Univ 30:7–16

    Google Scholar 

  23. Ding F, Tang D, Wang C, Zhang F, Zheng L (2017) Microstructure of hardened steel at high temperature and high strain rate. Trans Nanjing Univ Aeronaut Astronaut 34:380–387

    Google Scholar 

  24. Wang X, Xie L (2000) Technical status and progress in high speed cutting. China Mech Eng 11:190–194

    Google Scholar 

  25. Wang B (2016) Influence mechanism of material deformation and fracture behavior on chip formation during high speed machining. Shandong University

    Google Scholar 

  26. Suzuki H, Moriwaki T, Yamamoto Y, Goto Y (2007) Precision cutting of aspherical ceramic molds with micro PCD milling tool. CIRP Ann Manuf Technol 56:131–134

    Article  Google Scholar 

  27. Li X, Pei H (2019) Influence of rounded cutting edge radius of cutting tool on micro-machining scaling effect. Tool Eng 53:104–107

    Google Scholar 

  28. Peng Y, Zhu H, Huang C, Zhang D, Zhu L, Yao P (2019) Study on micro-cutting performance of QBe2. Tool Eng 53:15–23

    Google Scholar 

  29. Yan J, Yoshino M, Kuriagawa T, Shirakashi T, Syoji K, Komanduri R (2001) On the ductile machining of silicon for micro electro-mechanical systems (MEMS), opto-electronic and optical applications. Mater Sci Eng A 297:230–234

    Article  Google Scholar 

  30. Taminiau DA, Dautzenberg JH (1991) Bluntness of the tool and process forces in high-precision cutting. Springer, Berlin Heidelberg

    Google Scholar 

  31. Ran J, Li XU, Wang J, Gong F (2019) Influence of size effect to constitutive model and damage evolution in micro scaled plastic deformation under different strain rate. J Mech Eng 55:69

    Article  Google Scholar 

  32. Zhao D, Sangesland S, Vedvik N (2016) An experimental study of axial vibration assisted drilling. J Nat Gas Sci Eng 35:1158–1166

    Article  Google Scholar 

  33. Nemat-Nasser S, Guo WG, Nesterenko VF (2001) Dynamic response of conventional and hot isostatically pressed Ti–6Al–4V alloys: experiments and modeling. Mech Mater 33:425–439

    Article  Google Scholar 

  34. Field JE, Walley SM, Proud WG, Goldrein HT, Siviour CR (2004) Review of experimental techniques for high rate deformation and shock studies. Int J Impact Eng 30:725–775

    Article  Google Scholar 

  35. Li S, Feng S, Xue Z, Tu J (2017) Mechanical properties of PTFE at high strain rate. Explos Shock Waves 37:1046–1050

    Google Scholar 

  36. Wang B, Liu ZQ (2016) Effect of material dynamic properties on the chip formation mechanism during high speed machining (in Chinese). Sci Sin Tech 46:1–19

    Article  MathSciNet  Google Scholar 

  37. Yang X, Zhang B (2019) Material embrittlement in high strain-rate loading. Int J Extreme Manuf 1

  38. Lu J, Ravichandran G, Johnson WL (2003) Deformation behavior of the Zr41.2Ti13.8CU12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures. Acta Mater 51:3429–3443

    Article  Google Scholar 

  39. Sonti KSM, Dash B, Vamsi KV, Bandyopadhyay H, Ravisankar B, Sivaprasad K, Karthikeyan S (2021) Deformation behavior of Al/Cu in-situ metal-intermetallic laminates at low and high strain rates. J Alloy Compd 873

  40. Zhao J, Guo L, Zhang L, Wang X, Tang Y, Li Z (2021) Experimental investigations on the in-plane dynamic compressive behavior and upper limit of constant strain rate for 2D twill weave carbon fiber reinforced composite. Compos B Eng 220

  41. Zhang QB, Zhao J (2014) A review of dynamic experimental techniques and mechanical behaviour of rock materials. Rock Mech Rock Eng 47:1411–1478

    Article  Google Scholar 

  42. Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strain, high strain. In: Proceedings of the seventh international symposium on ballistics, Hague, Netherlands

  43. Bragov AM, Konstantinov AY, Lomunov AK, Yuzhina TN, Filippov AR (2018) Experimental complexes for investigation of behavior of materials at a strain rate of 5.102/105 s-1. MATEC Web Conf 226:3024–3026

    Article  Google Scholar 

  44. Zhao H, Gao X, Cai G (2006) Experimental study on chip formation mechanism due to shock of ultra-high speed grinding. Chin J Mech Eng 43–47

  45. Ning J, Lu J, Jiang F, Sun Y (2008) Investigation on dynamic properties of reinforced concrete with regular steel lattice microstructure. Acta Armamrntarii 29:1108–1113

    Google Scholar 

  46. Liu H, Ning J (2009) Mechanical behavior of reinforced concrete subjected to impact loading. Mech Mater 41:1298–1308

    Article  Google Scholar 

  47. Jones DR, Chapman DJ, Eakins DE.(2014) Gas gun driven dynamic fracture and fragmentation of Ti-6Al-4V cylinders. J Phys Conf Ser

  48. Tan YM, Cervantes O, Nam S, Molitoris JD, Hooper JP (2016) Dynamic fragmentation of cellular, ice-templated alumina scaffolds. J Appl Phys 119

  49. Li L, Shen F, Qu K, Xiao W, He C (2016) Progress of study on the safety of explosive charge under different strain-rate conditions. Chin J Explos Propellants 39:14–22

    Google Scholar 

  50. Belak J, Boercker DB, Stowers IF (1993) Simulation of nanometer-scale deformation of metallic and ceramic surfaces. MRS Bull 18:55–60

    Article  Google Scholar 

  51. Rentsch R, Inasaki I (2006) Molecular dynamics simulation of the nanometer scale cutting process. Int J Manuf Res 1:83–100

    Article  Google Scholar 

  52. Tanaka H, Shimada S, Anthony L (2007) Requirements for ductile-mode machining based on deformation analysis of mono-crystalline silicon by molecular dynamics simulation. CIRP Ann Manuf Technol 56:53–56

    Article  Google Scholar 

  53. Fang FZ, Wu H, Zhou W, Hu XT (2007) A study on mechanism of nano-cutting single crystal silicon. J Mater Process Tech 184:407–410

    Article  Google Scholar 

  54. Ulutan D, Zel T (2013) Determination of constitutive material model parameters in FE-based machining simulations of Ti-6Al-4V and IN-100 alloys: an inverse methodology. In: NAMRC

  55. Zhang Z, Yan J, Kuriyagawa T (2019) Manufacturing technologies toward extreme precision. Int J Extreme Manuf

  56. Inamura T, Takezawa N, Taniguchi N (1992) Atomic-scale cutting in a computer using crystal models of copper and diamond. CIRP Ann Manuf Technol 41:121–124

    Article  Google Scholar 

  57. Komanduri R, Chandrasekaran N, Raff LM (2000) M.D. Simulation of nanometric cutting of single crystal aluminum–effect of crystal orientation and direction of cutting. Wear 242:60–88

    Article  Google Scholar 

  58. Ikawa N (1991) An atomistic analysis of nanometric chip removal as affected by Tool-Work interaction in diamond turning. CIRP Ann Manuf Technol 40:551–554

    Article  Google Scholar 

  59. Zhu P, Fang F (2014) On the mechanism of material removal in nanometric cutting of metallic glass. Appl Phys A 116:605–610

    Article  Google Scholar 

  60. He Y, Lai M, Fang F (2019) A numerical study on nanometric cutting mechanism of lutetium oxide single crystal. Appl Surf Sci 496

  61. Kang Q, Fang X, Sun L, Ding J, Jiang Z (2019) Research on mechanism of nanoscale cutting with arc trajectory for monocrystalline silicon based on molecular dynamics simulation. Comp Mater Sci 170:109175

    Article  Google Scholar 

  62. Ayomoh M, Abou-El-Hossein K (2015) Surface finish in ultra-precision diamond turning of single-crystal silicon. In: Proceedings of SPIE - The International Society for Optical Engineering

  63. Liu B, Xu Z, Chen C, Pang K, Wang Y, Ruan Q (2019) Effect of tool edge radius on material removal mechanism of single-crystal silicon: numerical and experimental study. Comp Mater Sci 163:127–133

    Article  Google Scholar 

  64. Zhang ZG, Fang FZ, Hu XT, Sun CK (2009) Molecular dynamics study on various nanometric cutting boundary conditions. J Vac Sci Technol B 27:1355–1360

    Article  Google Scholar 

  65. Zhang Z (2014) Study of chip removal way based on the monocrystilline silicon cutting molecular dynamics simulation. Mach Des Manuf 122–123:126

    Google Scholar 

  66. Dai H, Chen G, Zhou C, Fang Q, Fei X (2017) A numerical study of ultraprecision machining of monocrystalline silicon with laser nano-structured diamond tools by atomistic simulation. Appl Surf Sci 393:405–416

    Article  Google Scholar 

  67. Ren J, Hao M, Lv M, Wang S, Zhu B (2018) Molecular dynamics research on ultra-high-speed grinding mechanism of monocrystalline nickel. Appl Surf Sci 455:629–634

    Article  Google Scholar 

  68. Chen G, Ren C, Yang X, Jin X, Tao G (2011) Finite element simulation of high-speed machining of titanium alloy (Ti–6Al–4V) based on ductile failure model. Int J Adv Manuf Tech 56:1027–1038

    Article  Google Scholar 

  69. Duan CZ, Yu HY, Cai YJL, Yuan Y (2010) Finite element simulation and experiment of chip formation during high speed cutting of hardened steel. Appl Mech Mater 29–32:1838–1843

    Article  Google Scholar 

  70. Tang D, Wang C, Hu Y, Song Y (2010) Finite element simulation of chip formation during high-speed peripheral milling of hardened mold steel. Key Eng Mater 443:274–278

    Article  Google Scholar 

  71. Moriwaki T, Horiuchi A, Okuda K (1990) Effect of cutting heat on machining accuracy in Ultra-Precision diamond turning. Ann CIRP 39:81–84

    Article  Google Scholar 

  72. Moriwaki T, Sugimura N, Luan S (1993) Combined stress, material flow and heat analysis of orthogonal micromachining of copper. Ann CIRP 42:75–78

    Article  Google Scholar 

  73. Nakayama SK (1998) The temperature of a single crystal diamond tool in turning. CIRP Ann Manuf Technol

  74. Lee WB, Cheung CF, To S (2003) Friction-induced fluctuation of cutting forces in the diamond turning of aluminium single crystals. Proc Inst Mech Eng B J Eng Manuf 217:615–631

    Article  Google Scholar 

  75. Brinksmeier E, Preuss W, Riemer O, Rentsch R (2017) Cutting forces, tool wear and surface finish in high speed diamond machining. Precis Eng 49:293–304

    Article  Google Scholar 

  76. Wang Z, Zhang J, Zhang J, Li G, Zhang H, Ul Hassan H, Hartmaier A, Yan Y, Sun T (2020) Towards an understanding of grain boundary step in diamond cutting of polycrystalline copper. J Mater Process Tech 276

  77. Gai W, Guo R, Guo J (2013) Molecular dynamics approach and its application in the analysis of multi-scale. Appl Mech Mater 444–445:1364–1369

    Article  Google Scholar 

  78. Li HY, Li XC, Li JH, Ma JL, Zhang YJ (2013) Finite element and molecular dynamics multiscale framework for TRIP steel macro and micro material behavior investigation. Appl Mech Mater 182

  79. Kubin LP, Canova G, Condat M, Devincre B, Pontikis V, Bréchet Y (1992) Dislocation microstructures and plastic flow: a 3D simulation. Solid State Phenom 23–24:455–472

    Article  Google Scholar 

  80. Huang M, Zhao L, Tong J (2012) Discrete dislocation dynamics modelling of mechanical deformation of nickel-based single crystal superalloys. Int J Plasticity 28:141–158

    Article  Google Scholar 

  81. Fan H, Aubry S, Arsenlis A, El-Awady JA (2015) Orientation influence on grain size effects in ultrafine-grained magnesium. Scripta Mater 97:25–28

    Article  Google Scholar 

  82. Aubry S, El-Awady JA, Fan H, Arsenlis A (2016) Grain size effects on dislocation and twinning mediated plasticity in magnesium. Scripta Mater 112:50–53

    Article  Google Scholar 

  83. Bouaziz O, Guelton N (2001) Modelling of TWIP effect on work-hardening. Mater Sci Eng A 319:246–249

    Article  Google Scholar 

  84. Bouaziz O, Allain S, Scott C (2008) Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels. Scripta Mater 58:484–487

    Article  Google Scholar 

  85. Bouaziz O, Bréchet Y (2009) Physical relationship between mean-field micro-mechanical approach and Orowan looping in particle-strengthened materials. Scripta Mater 60:366–368

    Article  Google Scholar 

  86. Sun C, Huang J, Guo N, Yang J (2014) A physical constitutive model for’ Fe-22Mn-0.6C TWIP steel based on dislocation density. Acta Metall Sin 50:1115–1122

    Google Scholar 

  87. Fan H, Aubry S, Arsenlis A, El-Awady JA (2015) The role of twinning deformation on the hardening response of polycrystalline magnesium from discrete dislocation dynamics simulations. Acta Mater 92:126–139

    Article  Google Scholar 

  88. Meng F, Ferrie E, Depres C, Fivel M (2021) 3D discrete dislocation dynamic investigations of persistent slip band formation in FCC metals under cyclical deformation. Int J Fatigue 149

  89. Bouaziz O (2012) Strain-hardening of twinning-induced plasticity steels. Scripta Mater 66:982–985

    Article  Google Scholar 

  90. Steinmetz DR, Jpel T, Wietbrock B, Eisenlohr P, Urrutia G, Akbari AS, Hickel T, Roters F, Raabe D (2013) Revealing the strain-hardening behavior of twinning-induced plasticity steels: Theory, simulations, experiments. Acta Mater 61:494–510

    Article  Google Scholar 

  91. Guo X (2018) Investigation on multiscale mechanical behavior induced by slipping and twinning for TWIP steel. University of Science and Technology, Beijing

    Google Scholar 

  92. Zhang K, Liu Z, Wang Y, Liu Y (2016) Method of strain-rate difference calculation in high-speed metal cutting. Measurement 91:474–478

    Article  Google Scholar 

  93. Oxley P.(1982) A mechanics of machining approach to assessing machinability. In: Proceedings of the Twenty-second International Machine Tool Design and Research Conference

  94. Sutter G, List G (2013) Very high speed cutting of Ti-6A1-4V titanium alloy - change in morphology and mechanism of chip formation. Int J Mach Tool Manuf 66:37–43

    Article  Google Scholar 

  95. Wang B, Liu Z, Song Q, Xing A, Su G (2015) Investigations of critical cutting speed and ductile-to-brittle transition mechanism for workpiece material in ultra-high speed machining. Int J Mech Sci 104:44–59

    Article  Google Scholar 

  96. Zong WJ, Cao ZM, He CL, Xue CX (2016) Theoretical modelling and FE simulation on the oblique diamond turning of ZnS crystal. Int J Mach Tool Manuf 100:55–71

    Article  Google Scholar 

  97. Wang W, Yao P, Wang J, Huang C, Zhu H, Zou B, Liu H, Yan J (2016) Crack-free ductile mode grinding of fused silica under controllable dry grinding conditions. Int J Mach Tool Manuf 109:126–136

    Article  Google Scholar 

  98. Su G, Liu Z, Wan Y, Ai X (2012) Influence mechanism of cutting speed on mechanical properties and chip morphology of workpiece materials in high speed cutting. Sci Sin Technol 42:1305–1317

    Google Scholar 

  99. Wei M, Chen X, Fei S (2017) The chip-flow behaviors and formation mechanisms in the orthogonal cutting process of Ti6Al4V alloy. J Mech Phys Solids 98:245–270

    Article  MathSciNet  Google Scholar 

  100. Wang M, Lu Z (2006) Research on brittle-ductile transition mechanism of ultra-precision turning of single crystal silicon. Aviat Precis Manuf Technol 42(1–4):22

    Google Scholar 

  101. Cao Q, Yu D, Xu J, Zhang M, Huang W (2018) Finite element simulation and experimental study on brittle-ductile transition cutting process of KDP crystal. J Synth Cryst 1512–1516:1534

    Google Scholar 

  102. Yao P, Wang W, Huang CZ, Wang J, Zhu HT, Kuriyagawa T (2013) Indentation crack initiation and ductile to brittle transition behavior of fused silica. Adv Mater Res 797:667–672

    Article  Google Scholar 

  103. Marshall DB, Lawn BR (1986) Indentation of brittle materials, microindentation techniques in materials science and engineering. In: International Metallographic Society

  104. Rawat S, Mitra N (2020) Twinning, phase transformation and dislocation evolution in single crystal titanium under uniaxial strain conditions: A molecular dynamics study. Comp Mater Sci 172:109325

    Article  Google Scholar 

  105. Wang W, Yao P, Wang J, Huang C, Zhu H, Liu H, Zou B, Liu Y (2017) Controlled material removal mode and depth of micro cracks in precision grinding of fused silica – a theoretical model and experimental verification - ScienceDirect. Ceram Int 43:11596–11609

    Article  Google Scholar 

  106. Wang W, Yao P, Wang J, Huang C, Kuriyagawa T, Zhu H, Zou B, Liu H (2017) Elastic stress field model and micro-crack evolution for isotropic brittle materials during single grit scratching. Ceram Int 43:10726–10736

    Article  Google Scholar 

  107. Suryanarayana C (2012) Mechanical behavior of emerging materials. Mater Today 15:486–498

    Article  Google Scholar 

  108. Liu H, Shen Y, Ma J, Zheng P, Zhang L (2016) Grain size dependence of uniform elongation in Single-Phase FCC/BCC metals. J Mater Eng Perform 25:1–7

    Article  Google Scholar 

  109. Brown TL, Saldana C, Murthy TG, Mann JB, Guo Y, Allard LF, King AH, Compton WD, Trumble KP, Chandrasekar S (2009) A study of the interactive effects of strain, strain rate and temperature in severe plastic deformation of copper. Acta Mater 57:5491–5500

    Article  Google Scholar 

  110. Ren XP, Liu ZQ (2018) Microstructure refinement and work hardening in a machined surface layer induced by turning Inconel 718 super alloy. Metall Mater 25:937–949

    Google Scholar 

  111. Alankar A, Mastorakos IN, Field DP (2009) A dislocation-density-based 3D crystal plasticity model for pure aluminum. Acta Mater 57:5936–5946

    Article  Google Scholar 

  112. Liu P, Chen Z (2011) Study of the dislocation dynamics in the plastic deformation. J Hefei Univ Technol Nat Sci 341–345

  113. Chen Z, Bong HJ, Li D, Wagoner RH (2016) The elastic-plastic transition of metals. Int J Plasticity

  114. Wang L, Wang Y (2005) The important role of stress waves in the study on dynamic constitutive behavior of materials by SHPB. Explos Shock Waves 17–25

  115. Cheng J, Jiang H, Jiao X, Jiang Y, Zhu J (2021) Experimental study on impact failure characteristics of large-size boulder specimen by SHPB. IOP Conf Ser Earth Environ Sci 714:22007

    Article  Google Scholar 

  116. Sakui S (2007) Two aspects of impact tests on metals. Trans Japan Inst Met 20:279–284

    Article  Google Scholar 

  117. Zhou LB, Shimizu J, Muroya A, Eda H (2003) Material removal mechanism beyond plastic wave propagation rate. Precis Eng 27:109–116

    Article  Google Scholar 

  118. Fang F, Lai M (2014) Development of nanometric cutting mechanism. Sci Sin Technol 44:1052–1070

    Article  Google Scholar 

  119. Lu Z, Wang M (2003) Survey on the research of ultra-precision cutting of hard-brittle optical crystal material. Chin J Mech Eng 039:15–21

    Article  Google Scholar 

  120. Li C, Zhang F, Zhang X, Rao X (2019) Research progress of ductile removal mechanism for hard-brittle single crystal materials. J Mech Eng 55:181–190

    Article  Google Scholar 

  121. Gerk AP, Tabor D (1978) Indentation hardness and semiconductor–metal transition of germanium and silicon. Nature 271:732–733

    Article  Google Scholar 

  122. Jasinevicius RG, Santos FJD, Pizani PS, Duduch JG, Porto AJV (2000) Surface amorphization in diamond turning of silicon crystal investigated by transmission electron microscopy. J Non-Cryst Solids 272:174–178

    Article  Google Scholar 

  123. Kovalchenko A, Gogotsi Y, Domnich V, Erdemir A (2002) Phase transformations in silicon under dry and lubricated sliding. Tribol T 45:372–380

    Article  Google Scholar 

  124. Chang L, Zhang L (2009) Mechanical behaviour characterisation of silicon and effect of loading rate on pop-in: A nanoindentation study under ultra-low loads. Mater Sci Eng

  125. Chang L, Zhang LC (2009) Deformation mechanisms at pop-out in monocrystalline silicon under nanoindentation. Acta Mater 57:2148–2153

    Article  MathSciNet  Google Scholar 

  126. Yan J (2004) Laser micro-Raman spectroscopy of single-point diamond machined silicon substrates. J Appl Phys 95:2094–2101

    Article  Google Scholar 

  127. Yan J, Zhang Z, Kuriyagawa T (2009) Mechanism for material removal in diamond turning of reaction-bonded silicon carbide. Int J Mach Tool Manu 49:366–374

    Article  Google Scholar 

  128. Meng B, Zhang Y, Zhang F (2016) Material removal mechanism of 6H-SiC studied by nano-scratching with Berkovich indenter. Appl Phys A 122:247

    Article  Google Scholar 

  129. Matsumoto M, Huang H, Harada H, Kakimoto K, Yan J (2017) On the phase transformation of single-crystal 4H-SiC during nanoindentation. J Phys D Appl Phys

  130. Xiang J, Xie L, Hu X, Huo S, Pang S, Wang X (2019) Simulation and experimental research on ultra-precision turning of SiCp/Al composites. Rare Metal Mat Eng 048:1687–1696

    Google Scholar 

  131. Zhang Z, Yao P, Wang J, Huang C, Zou B (2019) Nanomechanical characterization of RB-SiC ceramics based on nanoindentation and modelling of the ground surface roughness. Ceram Int 46

  132. Nakasuji T, Kodera S, Hara S, Matsunaga H, Shimada S (1990) Diamond turning of brittle materials for optical components. CIRP Ann Manuf Technol 39:89–92

    Article  Google Scholar 

  133. Shibata T, Fujii S, Makino E, Ikeda M (1996) Ductile-regime turning mechanism of single-crystal silicon. Precis Eng 18:129–137

    Article  Google Scholar 

  134. Taylor CR, Stach EA, Salamo G, Malshe AP (2005) Nanoscale dislocation patterning by ultralow load indentation. Appl Phys Lett 87:1416

    Article  Google Scholar 

  135. Oliver DJ, Bradby JE, Williams JS, Swain MV, Munroe P (2008) Thickness-dependent phase transformation in nanoindented germanium thin films. Nanotechnology 19:475709

    Article  Google Scholar 

  136. Lin H, Bonifacio C, Da S, Benthem KV, Schoenung JM (2011) Investigation into the microstructure evolution caused by nanoscratch-induced room temperature deformation in M-plane sapphire. Acta Mater 59:5181–5193

    Article  Google Scholar 

  137. Wasmer K, Gassilloud R, Michler J, Ballif C (2012) Analysis of onset of dislocation nucleation during nanoindentation and nanoscratching of InP. J Mater Res 27:320–329

    Article  Google Scholar 

  138. Guo JJ, Reddy KM, Hirata A, Fujita T, Gazonas GA, McCauley JW, Chen MW (2015) Sample size induced brittle-to-ductile transition of single-crystal aluminum nitride. Acta Mater

  139. Guo, Xiaolei, Qiang, Zhiqiang, Fan, Genlian, Xiong, Ding-Bang, Yishi, Zhang (2018) Size and crystallographic orientation effects on the mechanical behavior of 4H-SiC micro-/nano-pillars. Metall Mater Trans A Phys Metall Mater Sci

  140. Wang Y, Zou J, Huang H, Zhou L, Wang BL, Wu YQ (2007) Formation mechanism of nanocrystalline high-pressure phases in silicon during nano-grinding. Nanotechnology 18:465705

    Article  Google Scholar 

  141. Wu YQ, Huang H, Zou J, Zhang LC, Dell JM (2010) Nanoscratch-induced phase transformation of monocrystalline Si. Scripta Mater 63:847–850

    Article  Google Scholar 

  142. Wu YQ, Zou HH (2012) Lattice bending in monocrystalline GaAs induced by nanoscratching. Mater Lett 80

  143. Li C, Zhang F, Wang X, Rao X (2018) Investigation on surface/subsurface deformation mechanism and mechanical properties of GGG single crystal induced by nanoindentation. Appl Optics 57:3661

    Article  Google Scholar 

  144. Li C, Zhang F, Meng B, Rao X, Zhou Y (2017) Research of material removal and deformation mechanism for single crystal GGG (Gd 3 Ga 5 O 12) based on varied-depth nanoscratch testing. Mater Des 125:180–188

    Article  Google Scholar 

  145. Li C, Zhang F, Piao Y (2019) Strain-rate dependence of surface/subsurface deformation mechanisms during nanoscratching tests of GGG single crystal. Ceram Int 45:15015–15024

    Article  Google Scholar 

  146. Li C, Wu Y, Li X, Ma L, Zhang F, Huang H (2020) Deformation characteristics and surface generation modelling of crack-free grinding of GGG single crystals. J Mater Process Tech 279:116577

    Article  Google Scholar 

  147. Li C, Zhang F, Wang X, Rao X (2018) Repeated nanoscratch and double nanoscratch tests of Lu2O3 transparent ceramics: material removal and deformation mechanism, and theoretical model of penetration depth. J Eur Ceram Soc 38:705–718

    Article  Google Scholar 

  148. Li C, Zhang F, Wu Y, Zhang X (2018) Influence of strain rate effect on material removal and deformation mechanism based on ductile nanoscratch tests of Lu2O3 single crystal. Ceram Int 44:21486–21498

    Article  Google Scholar 

  149. Li C, Li X, Wu Y, Zhang F, Huang H (2019) Deformation mechanism and force modelling of the grinding of YAG single crystals. Int J Mach Tool Manuf 143:23–37

    Article  Google Scholar 

  150. Li C, Zhang Q, Zhang Y, Zhang F, Wang X, Dong G (2020) Nanoindentation and nanoscratch tests of YAG single crystals: An investigation into mechanical properties, surface formation characteristic, and theoretical model of edge-breaking size. Ceram Int 46:3382–3393

    Article  Google Scholar 

  151. Yuan Z (2006) New developments of precision and ultra-precision manufacturing technology. Tool Eng

  152. Akbari M, Buhl S, Leinenbach C, Wegener K (2016) A new value for Johnson Cook damage limit criterion in machining with large negative rake angle as basis for understanding of grinding. J Mater Process Tech 234:58–71

    Article  Google Scholar 

  153. Zhang T, Jiang F, Huang H, Lu J, Xu X (2021) Towards understanding the brittle-ductile transition in the extreme manufacturing. Int J Extreme Manuf

  154. Meyers MA, Benson DJ, Hringer V, O, Kad BK, Xue Q, Fu HH, (2002) Constitutive description of dynamic deformation: Physically-based mechanisms. Mater Sci Eng A 322:194–216

    Article  Google Scholar 

  155. Wang S, Pirouz P (2007) Mechanical properties of undoped GaAs. II: The brittle-to-ductile transition temperature. Acta Mater 55:5515–5525

    Article  Google Scholar 

  156. Dargusch S (2010) Thermally enhanced machining of hard-to-machine materials–a review. Int J Mach Tool Manu

  157. Toru K, Naohiko S, Mamoru M (2016) Experimental analysis of the machinability in the thermally assisted milling process of zirconia ceramics. Precis Eng 45:176–186

    Article  Google Scholar 

  158. Zhang C, Jiao F, Zhao B (2015) Research of precision machining for difficult-to-machine material. Tool Eng 49:3–8

    Google Scholar 

  159. Zhang R, Huang C, Wang J, Zhu H, Liu H (2021) Fabrication of high-aspect-ratio grooves with high surface quality by using femtosecond laser. Ind Lubr Tribol ahead-of-print

  160. Liu Q, Liao Z, Axinte D (2020) Temperature effect on the material removal mechanism of soft-brittle crystals at nano/micron scale. Int J Mach Tool Manuf

  161. Wang W, Yao P, Wang J, Huang CZ, Zhu HT (2016) Heat-assisted high efficiency ductile dry grinding of fused silica. Opt Precis Eng

  162. Long Z, Zhao W, Wang X (2007) Experimental research on surface reinforcement mechanism introduced by coupling effect of cutting forces and heat. J Aeronaut Mater 27:45–49

    Google Scholar 

  163. Yan X, Tao H, Gao X, Zhang P, Li H (2008) Study on modeling of cutting force for 300M ultra-high-strength steel in high-speed milling process. J Mech Strength 30:860–863

    Google Scholar 

  164. Chang Y, Sun T, Li Z (2015) Simulation and experiments of residual stresses on ultra-precision turning of hard aluminum alloy. J Harbin Inst Technol 47:41–46

    Google Scholar 

  165. Yip WS, To S (2020) Sustainable Ultra-Precision machining of titanium alloy using intermittent cutting. Int J Precis Eng Manuf Green Technol 7:361–373

    Article  Google Scholar 

  166. Lee WB, Wang H, Chan CY, To S (2013) Finite element modelling of shear angle and cutting force variation induced by material anisotropy in ultra-precision diamond turning. Int J Mach Tool Manuf 75:82–86

    Article  Google Scholar 

  167. Chen D, Li S, Fan J (2020) Effect of KDP-Crystal material properties on surface morphology in Ultra-Precision fly cutting. Micromachines Basel 11

  168. Jiang W (2011) Analysis on mechanical property of anisotropy of crystal CaF2 and simulation of cutting process in the ductile mode. Harbin Institute of Technology

    Google Scholar 

  169. Xiao P (2009) Reasearch on surface integrity of titanium alloy TC4 in ultra-high speed grinding. Hunan University

    Google Scholar 

  170. Saurav G, Luo X, Anupam A, Robert LR (2015) Diamond machining of silicon: a review of advances in molecular dynamics simulation. Int J Mach Tool Manu

  171. Gao M, Zhang K, Zhou Q, Zhou H, Liu B, Zheng G (2020) Numerical investigations on the effect of ultra-high cutting speed on the cutting heat and rock-breaking performance of a single cutter. J Petrol Sci Eng 190

  172. Gou X, Wei Y, Zhang X, Jin Z, Gou D (2013) Simulation research on AISI4340 steel ultra-precision cutting process based on FEM-SPH coupling method. J Dalian Univ Tech 53:526–531

    Google Scholar 

  173. Zhang Y, Dong G, Zhou M (2016) Simulation and experiment study on cutting temperature in diamond ultra-precision cutting of aluminum alloy mirror. Key Eng Mater 667:136–141

    Article  Google Scholar 

  174. Iwata K (1987) A study of cutting temperature in ultra - high precision diamond cutting of copper (OFC). In: Proceedings of the 15th NAMRC, vol 510

  175. Tan R, Zhao X, Guo S, Zou X, He Y, Geng Y, Hu Z, Sun T (2020) Sustainable production of dry-ultra-precision machining of Ti-6Al-4V alloy using PCD tool under ultrasonic elliptical vibration-assisted cutting. J Clean Prod 248

  176. Qu S, Yao P, Gong Y, Yang Y, Chu D, Zhu Q (2021) Modelling and grinding characteristics of unidirectional C–SiCs. Ceram Int

  177. Wu D, Zhang P, Wang H, Qiao Z, Wang B (2017) Effect of cutting parameters on surface quality during diamond turning of micro-prism array. Proc Inst Mech Eng B J Eng Manuf 231:555–561

    Article  Google Scholar 

  178. Su G, Liu Z (2012) Wear characteristics of nano TiAlN-coated carbide tools in ultra-high speed machining of AerMet100. Wear 289:124–131

    Article  Google Scholar 

  179. Zheng G, Zhao J, Xu R, Cheng X, Zhao G (2014) Failure mechanisms of a ceramic tool in ultra-high speed milling of nickel-based super alloys. Mod Mach Tool Autom Manuf Technique 127–130

  180. Wang Y, Zou B, Huang C (2019) Tool wear mechanisms and micro-channels quality in micro-machining of Ti-6Al-4V alloy using the Ti(C7N3)-based cermet micro-mills. Tribol Int

  181. Lucca DA, Klopfstein MJ, Riemer O (2020) Ultra-precision machining: cutting with diamond tools. J Manuf Sci Eng 142

  182. Paul E, Evans CJ, Mangamelli A, McGlauflin ML, Polvani RS (1996) Chemical aspects of tool wear in single point diamond turning. Precis Eng 18:4–19

    Article  Google Scholar 

  183. Zhao Q, Chen M, Liang Y, Dong S (2002) Wear of diamond cutting tool in ultra-precision single point turning. Tribology 22:321–327

    Google Scholar 

  184. Zhang SJ, To S, Zhang GQ (2017) Diamond tool wear in ultra-precision machining. Int J Adv Manuf Tech 88:613–641

    Article  Google Scholar 

  185. Chen H, Wang J, Dai Y, Zheng Z, Jiao F (2011) Research on diamond tool wear in ultra-precision cutting of CaF2 crystals. China Mech Eng 22(1519–1522):1526

    Google Scholar 

  186. Yan J, Syoji K, Tamaki JI (2003) Some observations on the wear of diamond tools in ultra-precision cutting of single-crystal silicon. Wear 255:1380–1387

    Article  Google Scholar 

  187. Wang Q (2015) Nano-zirconia ceramic ultrasonic diamond fly cutting removal mechanism and tool wear study. Henan Polytechnic University

    Google Scholar 

  188. Zou L, Yin J, Huang Y, Zhou M (2018) Essential causes for tool wear of single crystal diamond in ultra-precision cutting of ferrous metals. Diam Relat Mater 86:29–40

    Article  Google Scholar 

  189. Guo J, Zhang J, Pan Y, Kang R, Yoshiharu N, Paul S, Yue X, Wang B, Guo D (2020) A critical review on the chemical wear and wear suppression of diamond tools in diamond cutting of ferrous metals. Int J Extreme Manuf 2:12001–12023

    Article  Google Scholar 

  190. Zareena AR, Veldhuis SC (2012) Tool wear mechanisms and tool life enhancement in ultra-precision machining of titanium. J Mater Process Tech 212:560–570

    Article  Google Scholar 

  191. Durazo-Cardenas I, Shore P, Luo X, Jacklin T, Impey SA, Cox A (2007) 3D characterisation of tool wear whilst diamond turning silicon. Wear 262:340–349

    Article  Google Scholar 

  192. Yan J, Zhang ZZ, Tsunemoto (2011) Effect of nanoparticle lubrication in diamond turning of Reaction-Bonded SiC. Int J Autom Technol

  193. Yan J, Zhang Z, Kuriyagawa T (2010) Tool wear control in diamond turning of high-strength mold materials by means of tool swinging. CIRP Ann 59:109–112

    Article  Google Scholar 

  194. Wang Q, Yang Y, Yao P, Zhang Z, Yu S, Zhu H, Huang C (2021) Friction and cutting characteristics of micro-textured diamond tools fabricated with femtosecond laser. Tribol Int 154

  195. Ye GG, Xue SF, Ma W, Dai LH (2017) Onset and evolution of discontinuously segmented chip flow in ultra-high-speed cutting Ti-6Al-4V. Int J Adv Manuf Tech

  196. Recht RF (1964) Catastrophic thermoplastic shear. J Appl Mech 31:189–193

    Article  Google Scholar 

  197. Semiatin SL, Rao SB (1983) Shear localization during metal cutting. Mater Sci Eng 61:185–192

    Article  Google Scholar 

  198. Zhen BH, Komanduri R (1997) Modeling of thermomechanical shear instability in machining. Int J Mech Sci 39:1273–1314

    Article  MATH  Google Scholar 

  199. Joshi SS, Ramakrishnan N, Ramakrishnan P (2001) Micro-structural analysis of chip formation during orthogonal machining of Al/SiCp composites. J Mater Process Tech 88:90–96

    Article  Google Scholar 

  200. Molinari A, Musquar C, Sutter G (2002) Adiabatic shear banding in high speed machining of Ti–6Al–4V: Experiments and modeling. Int J Plasticity 18:443–459

    Article  MATH  Google Scholar 

  201. Sutter G (2005) Chip geometries during high-speed machining for orthogonal cutting conditions. Int J Mach Tool Manuf 45:719–726

    Article  Google Scholar 

  202. Nakayama K, Arai M, Kanda T (1988) Machining characteristics of hard materials. CIRP Ann 37:89–92

    Article  Google Scholar 

  203. Shaw MC, Vyas A (1993) Chip formation in the machining of hardened steel. CIRP Ann Manuf Technol 42:29–33

    Article  Google Scholar 

  204. Elbestawi MA, Srivastava AK, El-Wardany TI (1996) A model for chip formation during machining of hardened steel. CIRP Ann Manuf Technol 45:71–76

    Article  Google Scholar 

  205. Poulachon G, Moisan A (1998) A contribution to the study of the cutting mechanisms during high speed machining of hardened steel. CIRP Ann Manuf Technol 47:73–76

    Article  Google Scholar 

  206. Astakhov VP (2006) Tribology of metal cutting. Elsevier

    Google Scholar 

  207. Gente A, Hoffmeister HW, Evans CJ (2001) Chip formation in machining Ti6Al4V at extremely high cutting speeds. CIRP Ann Manuf Technol 50:49–52

    Article  Google Scholar 

  208. Baker M, Rosler J, Siemers C (2003) The influence of thermal conductivity on segmented chip formation. Comp Mater Sci 26:175–182

    Article  Google Scholar 

  209. Neugebauer R, Bouzakis KD, Denkena B, Klocke F, Sterzing A, Tekkaya AE, Wertheim R (2011) Velocity effects in metal forming and machining processes. CIRP Ann Manuf Technol 60:627–650

    Article  Google Scholar 

  210. Rohde RW, Butcher BM, Holland JR, Karnes CH (1973) Metallurgical effects at high strain rates. Plenum Publishing Corp

    Book  Google Scholar 

  211. Meyers MA, Murr LE (1982) Shock waves and high-strain-rate phenomena in metals. J Appl Mech 49:683

    Article  Google Scholar 

  212. Xie JQ, Bayoumi AE, Zbib HM (1998) FEA modeling and simulation of shear localized chip formation in metal cutting. Int J Mach Tool Manuf 38:1067–1087

    Article  Google Scholar 

  213. Su G (2011) Reasearch on formation process and mechanism of serrated chip in high speed cutting. Shangdong University

    Google Scholar 

  214. Poulachon G, Moisan AL, Jawahir IS (2006) Evaluation of chip morphology in hard turning using constitutive models and material property data. J Manuf Sci Eng 129:41–47

    Article  Google Scholar 

  215. Tan R, Zhao X, Zhang S, Zou X, Guo S, Hu Z, Sun T (2019) Study on ultra-precision processing of Ti-6Al-4V with different ultrasonic vibration-assisted cutting modes. Mater Manuf Process 34:1380–1388

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 52075302, 51875321).

Author information

Authors and Affiliations

Authors

Contributions

Xufeng Sun: investigation, methodology, writing–original draft. Peng Yao: writing–review and editing, supervision, project administration, resources, conceptualization. Shuoshuo Qu: writing–review and editing. Xianpeng Zhang: validation. Shimeng Yu: validation. Wei Wang: writing–review and editing. Chuanzhen Huang: writing–review and editing. Dongkai Chu: writing–review and editing.

Corresponding author

Correspondence to Peng Yao.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

All agree.

Consent for publication

All agree.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Yao, P., Qu, S. et al. Material properties and machining characteristics under high strain rate in ultra-precision and ultra-high-speed machining process: a review. Int J Adv Manuf Technol 120, 7011–7042 (2022). https://doi.org/10.1007/s00170-022-09111-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-09111-5

Keywords

Navigation