Skip to main content
Log in

Research status of deep penetration welding of medium-thick plate aluminum alloy

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The amount of metal materials is gradually increasing with the rapid development of manufacturing industry. Medium-thick plate aluminum alloy is widely used in heavy military vehicles, marine engineering, and other fields for weight reduction or corrosion resistance. However, it is difficult to obtain high-quality deep penetration welds by traditional welding technology to meet the requirements. Based on the welding solution of plate aluminum alloy, this paper summarizes the deep penetration welding process of aluminum alloy plates and analyzes the mechanism and research progress of various process methods. It mainly includes active flux tungsten inert gas welding, pulse melting electrode inert gas welding, swing arc narrow gap GMAW welding, high energy beam welding and laser arc hybrid welding, etc. The welding technology assisted by external magnetic field or ultrasonic field can also realize deep penetration of the weld, and can improve the weld forming, reduce porosity and cracks and other defects. The research on deep penetration welding technology is helpful to promote the high-speed development of plate aluminum alloy welding to automation and intelligence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Availability of data and material

All data generated or analyzed during this study are included in this manuscript.

Code availability

The software is used in the trial state.

References

  1. Cao GL, Chen L, Ren MF, Chen JL, Zhang YH (2019) Study on tensile properties of aluminum alloy welding joint using DIC method. J Mech Strength 41(03):588–593. https://doi.org/10.16579/j.issn.1001.9669.2019.03.014

  2. Xu HS, Yang XQ, Geng LY, Huo LX (2006) Experimental investigation on the fatigue resistance of aluminum alloy welded joints. J Mech Strength (03):442–447. https://doi.org/10.16579/j.issn.1001.9669.2006.03.028

  3. Meng QG, Fang HY, Xu WL, Ji SD (2006) Microstructure and mechanical properties of 2219 Al-alloy heat-affected zone with twin wire welding. Trans China Weld Inst 27(3):9–12. https://doi.org/10.3321/j.issn:0253-360X.2006.03.003

    Article  Google Scholar 

  4. Wang ZT (2012) Definition of plate. Light Alloy Fabr Technol 40(2):11

    Google Scholar 

  5. Wang ZT (2007) Process, property, application and market of aluminium alloys plate. Nonferrous Metal Processing 36(01):18. https://doi.org/10.3969/j.issn.1671-6795.2007.01.002

  6. Shuey RT, Barlat F, Karabin ME, Chakrabarti DJ (2009) Experimental and analytical investigations on plane strain Toughness for 7085 Aluminum Alloy. Metall Mater Trans A 40(2):365–376. https://doi.org/10.1007/s11661-008-9703-2

    Article  Google Scholar 

  7. Zhang CP, Huang Y, Zhang H (2010) Application of vacuum electron beam welding on big-thickness dense annular welds in asymmetrical structure. Dongfang Electric Rev 24(04):27–32. https://doi.org/10.13661/j.cnki.issn1001-9006.2010.04.003

  8. Mu SS (2019) Research on laser welding process parameters of 6061-T6 heavy plate aluminum alloy. Dissertation Huazhong Univ Sci Technol. https://doi.org/10.27157/d.cnki.ghzku.2019.000800.

  9. Zheng TX, Zhou BF, Wang J, Shuai SS (2018) Compression properties enhancement of Al-Cu alloy solidified under a 29T high static magnetic field. Mat Sci Eng A-Struct 7(13):52–82. https://doi.org/10.1016/j.msea.2018.07.013

    Article  Google Scholar 

  10. Zhang CC, Chen FR (2007) Present state and perspectives of thickness high-strength aluminum alloy welding. Electric Weld Mach 07:6–11. https://doi.org/10.3969/j.issn.1001-2303.2007.07.002

    Article  Google Scholar 

  11. Gao ZZ, Wang ZT, Zhang L (2007) Review about supply and demand of global aluminium alloy plate for aviation. Light Alloy Fabr Technol 35(5):1–3. https://doi.org/10.3969/j.issn.1007-7235.2007.05.001

    Article  Google Scholar 

  12. Rao KS, Raju PN, Reddy GM, Rao KP (2007) Microstructure and high temperature strength of age hardenable AA2219 aluminium alloy modified by Sc, Mg and Zr additions. Mat Sci Eng A-Struct 25(1):92–101. https://doi.org/10.1179/174328408X259052

    Article  Google Scholar 

  13. Xiao DH, Wang JN, Ding DY, Chen SP (2002) Effect of Cu content on the mechanical properties of an Al-Cu-Mg-Ag alloy. J Alloy Compd 343(1–2):77–81. https://doi.org/10.1016/S0925-8388(02)00076-2

    Article  Google Scholar 

  14. Joost WJ (2002) Reducing vehicle weight and improving U.S. energy efficiency using integrated computational materials engineering. J Metals 64:1032–1038. https://doi.org/10.1007/s11837-012-0424-z

    Article  Google Scholar 

  15. Liu B, Peng CQ, Wang RC, Wang XF, Li TT (2010) Recent development and prospects for giant plane aluminum alloys. Chin J Nonferrous Met 20(09):1705–1715. https://doi.org/10.19476/j.ysxb.1004.0609.2010.09.008.

  16. Pan JL (2010) Development of nuclear power industry and welding technology. Conference Proceeding, Chinese Mechanical Engineering Society, China Welding Association. China Welding Industry Forum. Beijing: Tsinghua Univ

  17. Zhou PZ, Li DH, He DQ, Deng H (2007) Through-thickness diversity of properties in friction stir welded 2219–T87 thick aluminum alloy plate. Trans China Weld Inst 28(10):5–8. https://doi.org/10.3321/j.issn:0253-360x.2007.10.002

    Article  Google Scholar 

  18. Yan S, Xing B, Zhou H, Xiao Y, Qin QH, Chen H (2018) Effect of filling materials on the microstructure and properties of hybrid laser welded Al-Mg-Si alloys joints. Mater Charact 144:205–218. https://doi.org/10.1016/j.matchar.2018.07.018

    Article  Google Scholar 

  19. Wu HY, Xing L, Chen YH, Huang CP (2011) Fracture location characteristics of 2219 aluminum alloy friction stir welded joints. Heat Treat Met 36(05):90–93. https://doi.org/10.13251/j.issn.0254-6051.2011.05.025.

  20. Yang J (2010) WCAAP system of ultra-light automatic tube catapult. Dissertation Nanjing Univ Sci Technol. https://doi.org/10.7666/d.y1697996

    Article  Google Scholar 

  21. Lan ZY, Li CY, Zhao X, Zhu HB (2020) Application of deep penetration welding technology for hydraulic support. Coal Mine Machine 41(09):95–97. https://doi.org/10.13436/j.mkjx.202009030

  22. Singh SR, Khanna P (2020) A-TIG (Activated flux tungsten inert gas) welding: - A review. Mater Today 44(3). https://doi.org/10.1016/j.matpr.2020.10.712

  23. Ge XC (2003) Research and Development of A-TIG Welding Technology. Automobile Technol Mater (05):13–15

  24. Ajayi OO, Omowa OF, Abioye OP, Omotosho OA, Akinlabi ET, Akinlabi SA, Abioye AA, Owoeye TF, Afolalu SA (2018) Finite element modelling of electrokinetic deposition of zinc on mild steel with ZnO-Citrus sinensis as nano-additive. In TMS Annual Meeting & Exhibition. Springer, Cham. https://doi.org/10.1007/978-3-319-72059-3_19

  25. Abioye AA, Atanda PO, Abioye OP, Afolalu SA, Dirisu JO (2017) Microstructural Characterization and Some Mechanical Behaviour of Low Manganese Austempered Ferritic Ductile Iron. Int J Appl Eng Res 12(23):14435–14441

    Google Scholar 

  26. Zhao W, Wang ZX, Zhang Y (2021) Process research on activator A-TIG welding. Safety Technol Special Equipment 04:59–60

    Google Scholar 

  27. Liu FY, Lin SB, Yang CL, Wu L (2002) Effect of coating quantity of fluxes on weld penetration depth in A-TIG welding. Ater Sci Tech-Lond 03:310–313. https://doi.org/10.3969/j.issn.1005-0299.2002.03.020

    Article  Google Scholar 

  28. Zhang ZG, Zhang DD (2021) Development of A-TIG welding active flux for crack repair of thermal pipeline. Welded Pipe Tube 44(01):9–13. https://doi.org/10.19291/j.cnki.1001-3938.2021.01.002.

  29. Afolalu SA, Ikumapayi OM, Emetere ME, Ongbali SO (2021) Investigation of mechanical properties and characterization of a joint using nano flux powder for A-TIG welding. Mater Today 44(P1). https://doi.org/10.1016/J.MATPR.2021.01.091

  30. Hidetoshi F, Toyoyuki S, Shan PL, Kiyoshi N (2007) Development of an advanced A-TIG(AA-TIG) welding method by control of Marangoni convection. Mater Sci Tech-Lond 495(1–2):296–303. https://doi.org/10.1016/j.msea.2007.10.116

    Article  Google Scholar 

  31. Yang L, Fan D, Huang Y, Yan LQ, Wu FH, Zhang ZM, Qu HY (2011) Research on coupling arc AA-TIG high-speed welding process. Electric Weld Machine 41(5):57–61

    Google Scholar 

  32. Howse DS, Lucas W (2000) Investigation into arc constriction by active fluxes for tungsten inert gas welding. Sci Technol Weld Joi 5(3):189–193. https://doi.org/10.1179/136217100101538191

    Article  Google Scholar 

  33. Simonik AG (1976) The effect of contraction of the arc discharge upon the introduction of electronegative elements. Svar Proiz 3:68–71

    Google Scholar 

  34. Heiple CR, Roper JR, Stagner RT, Aden RJ (1983) Surface active element effects on the shape of GTA, laser and electron beam welds. Weld Res Suppl 3:72–77

    Google Scholar 

  35. Zhu RF, Bai G, Gao DL, He YH, Su LL (2008) Pulsed argon arc welding of large thickness aluminum components in cold state. Conference Proceeding. Shaanxi Weld Acad Conf Proc

  36. Wu XY, Tian RY, Zhang ZY, Li YA, Zhao ZL, Ding CG (2020) Study on the deep penetration welding procedure and microstructure property of weather-resistant steel SMA490BW welded. Electric Weld Machine 50(10):65–69+128

  37. Warinsiriruk E, Greebmalai J, Sangsuriyun M (2019) Effect of double pulse MIG welding on porosity formation on aluminium 5083 fillet joint. Matec Web Conf. https://doi.org/10.1051/matecconf/201926901002

    Article  Google Scholar 

  38. Liu AH, Tang XH, Lu FG (2013) Study on welding process and prosperities of AA5754 Al-alloy welded by double pulsed gas metal arc welding. Mater Des 50:149–155. https://doi.org/10.1016/j.matdes.2013.02.087

    Article  Google Scholar 

  39. Praveen P, Yarlagadda PK, Kang MJ (2005) Advancements in pulse gas metal arc welding. J Mater Process Tech 164–165:1113–1119. https://doi.org/10.1016/j.jmatprotec.2005.02.100

    Article  Google Scholar 

  40. Liu AH, Tang XH, Lu FG (2013) Arc profile characteristics of Al alloy in double-pulsed GMAW. Int J Adv Manuf Tech 68(9–12):2015–2023. https://doi.org/10.1007/s00170-013-4808-1

    Article  Google Scholar 

  41. Cao SF, Chen TP, Yi J, Guo PC (2014) Simulation of temperature, stress and deformation during double pulsed MIG welding of aluminum alloy. Chin J Nonferrous Met 24(7):1685–1692. https://doi.org/10.19476/j.ysxb.1004.0609.2014.07.001.

  42. He KF, Si Y, Lu W, Lu QH, Li Q, Huang CH, Xiao SW (2020) Time frequency feature extraction of the arc energy for quality detection of the aluminum alloy double pulse MIG welding. J Adv Mech Des Syst 14(6). https://doi.org/10.1299/jamdsm.2020jamdsm0080

  43. Chen YX, He YS, Chen HB, Zhang HJ, Chen SB (2014) Effect of weave frequency and amplitude on temperature field in weaving welding process. Int J Adv Manuf Tech 75(5/6/7/8):803–813. https://doi.org/10.1007/s00170-014-6157-0.

  44. Wang JY, Zhu J, Fu P, Su RJ, Han W, Yang F (2012) A swing arc system for narrow gap GMA welding. Isij Int 52(1):110–114. https://doi.org/10.2355/isijinternational.52.110

    Article  Google Scholar 

  45. Zheng SM, Gao HM, Zhou L (2012) Narrow gap MAG welding using strip electrode. J Mech E 48(8):74–78. https://doi.org/10.3901/JME.2012.08.074

    Article  Google Scholar 

  46. Xu WH, Yang QF, Xiao YF (2020) Research status of sidewall fusion control technology in narrow gap welding. J Netshape Forming Eng 12(04):47–54. https://doi.org/10.3969/j.issn.1674-6457.2020.04.005

    Article  Google Scholar 

  47. Wang Q (2013) Research on arc-swing narrow gap MIG of thick-wall aluminium alloy. Dissertation Harbin Univ Technol. https://doi.org/10.7666/d.D417723

    Article  Google Scholar 

  48. Yao S, Qian WF, Qin XM (2002) Research on narrow gap gas shielded melting pole welding technology. Weld Technol S1:43–45. https://doi.org/10.3969/j.issn.1002-025X.2002.z1.017

    Article  Google Scholar 

  49. Li Q, Ma LH (2021) Influence of narrow gap GAMW welding process parameters on arc stability. Weld Technol 50(06):14–18+107. https://doi.org/10.13846/j.cnki.cn12-1070/tg.2021.06.002

  50. Nguyen DH (2014) Research on droplet transition and welding process in swing arc narrow gap GMAW. Dissertation Harbin Univ Technol. https://doi.org/10.7666/d.D590590

    Article  Google Scholar 

  51. Xu WH, Lin SB, Yang CL, Fan CL (2015) Weld bead formation in oscillating arc narrow gap verticalup GMAW process. Trans China Weld Inst 36(4):56–60+116

  52. Xu WH, Dong CL, Zhang YP, Yi YY (2017) Characteristics and mechanisms of weld formation during oscillating arc narrow gap vertical up GMA welding. Weld World 61(2):241–248. https://doi.org/10.1007/s40194-017-0425-1

    Article  Google Scholar 

  53. Wang JC, Duan B, Zhang CH, Zhang GX, Ren YZ (2016) Simulation analysis and parameter optimization of narrow gap GMAW welding process. Weld Technol 45(05):92–95+8. https://doi.org/10.13846/j.cnki.cn12-1070/tg.2016.05.023.

  54. Wang ZJ (2007) Fusion welding method and equipment. Machine Indust Press Monograph 2

    Google Scholar 

  55. Zou JL, Wu SK, Yang WX, He Y, Xiao RS (2015) A novel method for observing the micro-morphology of keyhole wall during high-power fiber laser welding. Mater Des 89:785–790. https://doi.org/10.1016/j.matdes.2015.10.039

    Article  Google Scholar 

  56. Zhang G, Wu CS, Liu X (2015) Single vision system for simultaneous observation of keyhole and weld pool in plasma are welding. J Mater Process Tech 215:71–78. https://doi.org/10.1016/j.jmatprotec.2014.07.033

    Article  Google Scholar 

  57. Atabaki MM, Yazdian N, Kovacevic R (2016) Partial penetration laser-based welding of aluminum alloy (AA 5083–H32)-ScienceDirect. Optik 127(16):6782–6804. https://doi.org/10.1016/j.ijleo.2016.05.007

    Article  Google Scholar 

  58. Martín-Menéndez C, Rodríguez E, Ottolini M, Caixas J, Guirao J (2016) Analysis of the effect of the Electron-Beam welding sequence for a fixed manufacturing route using finite element simulations applied to ITER vacuum vessel manufacture. Fusion Eng Des 104:84–92. https://doi.org/10.1016/j.fusengdes.2016.02.029

    Article  Google Scholar 

  59. Schwarz H (1964) Mechanism of high-power-density electron beam penetration in metal. J Appl Phys 35(7):2020–2029. https://doi.org/10.1063/1.1702787

    Article  Google Scholar 

  60. Liu CC (2017) Numerical study on the welding pool behaviour and weld formation regularity during electron beam welding of aluminium alloy. Dissertation Harbin Univ Technol

  61. Huang J, Li ZG, Tang XH (2010) High-power laser welding of plate. Aeronautical Manuf Technol (02):26–29. https://doi.org/10.16080/j.issn1671-833x.2010.02.001

  62. Wang CW, Zhou JF, Li SL, Mao WD (2021) Integrated application of laser deep penetration welding in manufacturing the aluminum body. Auto Manuf Eng (03):22–25. https://doi.org/10.16173/j.cnki.ame.2021.03.006

  63. Han XH, Ma Y, Ma GL, Yang HF, Xu L (2020) Dynamic characteristic analysis of keyhole in double beam laser welding. Trans China Weld Inst 41(2):93–96

    Google Scholar 

  64. Ivanov SY, Karkhin VA, Mikhailov VG, Martikainen J, Hiltunen E (2018) Assessment of the Sensitivity of Welded Joints of Al–Mg–Si Alloys to Liquation Cracks Under Laser Welding. Met Sci Heat Treat + 59(11–12):773–778. https://doi.org/10.1007/s11041-018-0225-2

  65. Su TJ (2018) Technological test of the variable polarity vertical-up plasma arc welding for 5083 aluminum alloy medium plate. Metal Working (Hot Working) (05):53–54

  66. Tang ZQ, Jiang F, Xu P, Jiang JY, Zeng JJ, Lu LY, Tong MM (2020) Investigation on microstructure, mechanical properties and corrosion behavior of VPPA welded Al–Mg–Mn–Sc–Zr alloy. Mater Today Commun 25:101480. https://doi.org/10.1016/j.mtcomm.2020.101480

    Article  Google Scholar 

  67. Xu L, Lv XC, Xue Y, Xu FJ, Chen XY (2019) Adaptability of variable polarity plasma arc welding of aluminium alloy. Weld Join (11):24–27+66. https://doi.org/10.1016/10.12073/j.hj.20190624005

  68. Saad E, Wang HJ, Kovacevic R (2006) Classification of molten pool modesin variable polarity plasma based on acoustic signature. J Mater Process Tech 174(1–3):127–136. https://doi.org/10.1016/j.jmatprotec.2005.03.020

    Article  Google Scholar 

  69. Sun ST, Gao YJ, Wu X, Li C, Zhang S, Han LY (2016) Performance analysis of thick aluminum alloy plate with variable polarity plasma arc welding. J Press Vess-T Asme 33(11):7–13. https://doi.org/10.3969/j.issn.1001-4837.2016.11.002

    Article  Google Scholar 

  70. Li GW, Chen FR, Han YQ, Zhang SQ (2015) 7075 Aluminum Alloy Medium and Thick Plate Variable Polarity Plasma Perforation Vertical Welding Process. Weld Technol 44(11):29–32. https://doi.org/10.13846/j.cnki.cn12-1070/tg.2015.11.010

  71. Qiao CR (2018) Numeral simulation of variable polarity plasma arc welding of aluminum alloy based on fluent. Dissertation Inner Mongolia Univ Technol

  72. Peng XQ, Yang C, Su M, Chen SH (2018) Laser welding technology for aluminum alloy and its application prospect. Automotive Eng (09):15–18

  73. Steen MW (1980) Arc augmented laser processing of materials. J Appl Phys 51(11):5636–5641. https://doi.org/10.1063/1.327560

    Article  Google Scholar 

  74. Dong SY, Wu F, Chen DD, Wan XM, Qiu ZS, Li JQ, Yan JK (2021) Research progress on laser-arc hybrid welding of aluminum alloy. Yunnan Metall 50(03):114–121. https://doi.org/10.3969/j.issn.1006-0308.2021.03.026

    Article  Google Scholar 

  75. Han LM (2018) Study on laser-MIG hybrid welding process for medium thickness plate of 304 stainless steel. Dissertation Shenyang Univ Technol

  76. Zhou YF (2016) Study on fiber laser-MIG arc hybrid welding of 5A06 aluminum alloy. Dissertation Hunan Univ

  77. Wen P (2020) Porosity characteristic of laser-arc hybrid welding of aluminium alloy and hollow profiles weldability. Dissertation Beijing Univ Technol. https://doi.org/10.26935/d.cnki.gbjgu.2020.001104.

  78. Zhang L (2018) Research on the process of thick 7A52 aluminum alloy by laser-MIG hybrid welding. Dissertation Nanjing Univ Sci Technol

  79. Cai WL (2013) Laser-arc hybrid heat source welding technology and its application. Metal Work (Hot Processing) 12:21–23. https://doi.org/10.3969/j.issn.1674-165X.2013.12.007

    Article  Google Scholar 

  80. Yuan XC, Zhao H, Wang PP (2010) Research and application of laser-arc hybrid welding technology. Weld Technol 39(5):2–7. https://doi.org/10.3969/j.issn.1002-025X.2010.05.002

    Article  Google Scholar 

  81. Wang JD, Xu RZ, Guo XM (2018) Research progress in high-efficiency melting welding of aluminum alloys. Hot Work Technol 47(21):15–18. https://doi.org/10.14158/j.cnki.1001-3814.2018.21.004

  82. Woodward NJ, Richardson IM, Thomas A (2014) Variable polarity plasma arc welding of 6.35 mm aluminium alloys: parameter development and preliminary analysis. Sci Technol Weld Joi 5(1):21–1718. https://doi.org/10.1179/stw.2000.5.1.21

  83. Yan SH, Zhu ZY, Ma CP, Qin Q-H, Chen H, Fu YN (2019) Porosity formation and its effect on the properties of hybrid laser welded Al alloy joints. Int J Adv Manuf Tech 104(5–8):2645–2656. https://doi.org/10.1007/s00170-019-04106-1

    Article  Google Scholar 

  84. Zhou XD, Zhao YQ, Li H, Zhan XH (2021) Research on the microstructure and microhardness of laser-MIG hybrid welded joint of 5A06 aluminum alloy. Appl Laser 41(1):7–12. https://doi.org/10.14128/j.cnki.al.20214101.007.

  85. Cai C, He S, Chen H, Zhang WH (2019) The influences of Ar-He shielding gas mixture on welding characteristics of fiber laser-MIG hybrid welding of aluminum alloy. Opt Laser Technol 113:37–45. https://doi.org/10.1016/j.optlastec.2018.12.011

    Article  Google Scholar 

  86. Deng WH, Chen S, Liao NN, Lin M, Wang YM (2021) Comparative study on the process and numerical simulation of MIG welding and laser-MIG hybrid welding on medium-thick 6082–T6 aluminum alloy specimens. Metal Work (Hot Processing) 6:51–56. https://doi.org/10.3969/j.issn.1674-165X.2021.06.009

    Article  Google Scholar 

  87. Ye GW, Zhang NF, Liu QW, Gao XD (2021) Analysis of droplet transition features and weld formation in laser-MIG hybrid welding. J Phys Conf Ser 1986(1). https://doi.org/10.1088/1742-6596/1986/1/012031

  88. Zhao YQ, Zhan XH, Zhou XD, Liu T, Kang Y (2021) Effect of heat input on macro morphology and porosity of laser-MIG hybrid welded joint for 5A06 aluminum alloy. Int J Adv Manuf Tech (5). https://doi.org/10.1007/s00170-021-07378-8

  89. Jiang SY, Chen HM, Liu ZL (2002) Application and progress of magnetic control technology in welding. China Mech Eng 13(21):82–85+6. https://doi.org/10.3321/j.issn:1004-132X.2002.21.023

  90. Varghese VMJ, Suresh MR, Kumar DS (2013) Recent developments in modeling of heat transfer during TIG welding-a review. INT J ADV MANUF TECH 64(5–8):749–754. https://doi.org/10.1007/s00170-012-4048-9

    Article  Google Scholar 

  91. Xu K (2019) Effect of alternating magnetic field on Microstructure and properties of ZL205A aluminum alloy MIG welding. Dissertation Zhongbei Univ

  92. Brown D (1962) The effect of electromagnetic stirring and mechanical vibration on arc welding. Weld J 41(2):41–50

    Google Scholar 

  93. Hicken GK, Jackson CE (1996) Effects of applied magnetic fields on welding arcs. Weld J 45(8):513–518

    Google Scholar 

  94. Yang DC, Liu JH (2001) Effect of outer magnetic field on laser beam welding penetration depth. Laser Technol 5:347–350

    Google Scholar 

  95. Guo XM, Yang CG (2007) Effect of electromagnetic stirring on the shape, structure and mechanical properties of Al-Cu alloy MIG weld. J Aeronaut Mater 27(2):18–21

    Google Scholar 

  96. Chang YL, Zhang HX, Guan ZQ, Liu XG (2019) Effect of sharp angular magnetic field on TIG arc and weld formation. J Shenyang Univ Technol 22(6):35–40. https://doi.org/10.7688/j.issn.1000-1646.2021.05.05

    Article  Google Scholar 

  97. Liu S, Liu ZM, Zhao XC, Fan XG (2020) Influence of cusp magnetic field configuration on K-TIG welding arc penetration behavior. J Manuf Process 53:229–237. https://doi.org/10.1016/j.jmapro.2020.02.027

    Article  Google Scholar 

  98. Guo F, Luo PL, Bi Q, Li K (2008) Review on metal melt treatment technology using with ultrasonic field. Metal Mater Metall Eng 36(1):59–64. https://doi.org/10.3969/j.issn.1005-6084.2008.01.015

    Article  Google Scholar 

  99. Xie EH, Li XQ (2009) Acoustic streaming phenomenon during ultrasonic sonication on melt. Chin J Eng 31(11):1425–1429. https://doi.org/10.3321/j.issn:1001-053X.2009.11.014

    Article  Google Scholar 

  100. Sun QJ (2010) Research on ultrasonic-arc behaviors and ultrasonic assisted TIG welding method. Dissertation Harbin Inst Technol. https://doi.org/10.7666/d.D268880

    Article  Google Scholar 

  101. Wang PB (2019) Study on ultrasonic-assisted TIG welding process and mechanism of 7075 aluminum alloy. Dissertation Shenyang Univ Technol

  102. Sun QJ, Lin SB, Yang CL, Yan JC (2010) Investigation and application of ultrasonic-TIG hybrid welding equipment. Trans China Weld Inst 31(2):43–47

    Google Scholar 

  103. Wang S (2010) Research on welding process and effect of ultrasonic in ultrasonic-TIG welding of aluminum. Dissertation Harbin Univ Technol 7:38–45. https://doi.org/10.7666/d.D268566

    Article  Google Scholar 

  104. Xu JR (2014) Optimized design of ultrasonic-TIG torch and welding process study on medium-thick aluminum alloys. Dissertation Harbin Univ Technol

  105. Wu LJ, Liu YB, Cheng WQ, Sun QJ, Wang JF (2016) Ultrasound-assisted underwater wet welding process. Trans China Weld Inst 37(12):33–36

    Google Scholar 

  106. Chen JK, Xu CL, Niu ZY, Pu XY, Wang L (2016) An ultrasonic assisted laser arc hybrid welding method for aluminum alloy. Patent, Beijing: CN201610290848.1

Download references

Funding

The present research work was financially supported by Key Research and Development Project of Liaoning Province (Grant No. 2019JH2/10100017), Special project for the transformation of major scientific and technological achievements in Shenyang (Grant No. 20–203-5–01), the National Natural Science Foundation of China (Grant No. 51775354), Liaoning Revitalization Talents Program (Grant No. XLYC2007072), and the Ministry of Education and Science of Russian Federation (Grant No.11.9505.2017/8.9).

Author information

Authors and Affiliations

Authors

Contributions

Tianhua Wang: conceptualization, methodology, summary principle, writing-original draft. Yiwen Li: collecting documents, writing-original draft. Yunhe Mao: collecting documents, Modify format. Huifang Liu: collecting documents, supervision. Aleksandr Babkin: writing-review and editing, resources. Yunlong Chang: project administration, supervision.

Corresponding author

Correspondence to Yunlong Chang.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

All authors agree to participate.

Consent for publication

All authors agree to publication.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Li, Y., Mao, Y. et al. Research status of deep penetration welding of medium-thick plate aluminum alloy. Int J Adv Manuf Technol 120, 6993–7010 (2022). https://doi.org/10.1007/s00170-022-09089-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-09089-0

Keywords

Navigation