Skip to main content

Advertisement

Log in

A review of electrically assisted heat treatment and forming of aluminum alloy sheet

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

High-performance heat treatable aluminum alloy sheet is widely used in aircraft and automobile industries because of its excellent mechanical properties, including low density, good corrosion resistance, and high specific strength. Many heat treatment and forming methods have been developed for aluminum alloys, such as warm stamping, hot stamping in die quenching, in order to maximize the formability, and the formed strengths. Among which, electrically assisted process (EAP) becomes attractive due to its improvement of convenience, energy saving, and efficiency. Many investigations have been published in recent decades to show that the heat treatment can be accelerated and the formability can be improved due to the thermal and non-thermal effects of electric current and tried to characterize the possible mechanisms. Hence, this paper gives a comprehensive review of the effects of electric current on the heat treatment and forming of aluminum alloy from macro- and micro-aspects. Based on this, some perspectives in developing trends of EAPs are proposed, including the mechanisms of EAP, the mechanical properties under complex stress states, and the industrial applications of EAP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig.13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Zheng K, Politis DJ, Wang L, Lin J (2018) A review on forming techniques for manufacturing lightweight complex—shaped aluminium panel components. International Journal of Lightwght Materials and Manufacture 1:55–80. https://doi.org/10.1016/j.ijlmm.2018.03.006

    Article  Google Scholar 

  2. Heinz A, Haszler A, Keidel C, Moldenhauer S, Benedictus R, Miller WS (2000) Recent development in aluminium alloys for aerospace applications. Mater Sci Eng A 280:102–107. https://doi.org/10.1016/S0921-5093(99)00674-7

    Article  Google Scholar 

  3. Dong H (2020) Design and application of precision cast aluminum alloy carbody parts. Dissertation, Hefei University of Technology

  4. Wang B (2015) Present situation and future development of aluminum alloy forging energy in China. Forging & Metalforming 15(18):20–22

  5. Cheng Z, Li Y, Li J, Li F, Meehan PA (2022) Ultrasonic assisted incremental sheet forming: constitutive modeling and deformation analysis. J Mater Process Technol 299:117365. https://doi.org/10.1016/j.jmatprotec.2021.117365

    Article  Google Scholar 

  6. Maeno T, Mori K, Yachi R (2017) Hot stamping of high-strength aluminium alloy aircraft parts using quick heating. CIRP Ann 66:269–272. https://doi.org/10.1016/j.cirp.2017.04.117

    Article  Google Scholar 

  7. Nikolay S, Peter S, Thomas W, Dirk U, Carsten M (2010) Towards high strength 7xxx aluminium sheet components through warm forming. Proc Int Conf Alum Alloys 1237–1242

  8. Roth JT, Loker I, Mauck D, Warner M, Golovashchenko SF, Krause A (2008) Enhanced formability of 5754 aluminum sheet metal using electric pulsing. Trans N Am Manuf Res Inst SME 405–412

  9. Siopis MS, Kinsey BL (2010) Experimental investigation of grain and specimen size effects during electrical-assisted forming. J Manuf Sci Eng 132

  10. Jin K, Wang J, Guo X, Domblesky J, Wang H, Jin X, Ding R (2019) Experimental analysis of electro-assisted warm spin forming of commercial pure titanium components. Int J Adv Manuf Technol 102:293–304. https://doi.org/10.1007/s00170-018-3085-4

    Article  Google Scholar 

  11. Lv Z, Zhou Y, Zhan L, Zang Z, Qin S (2020) Electrically assisted deep drawing on high-strength steel sheet. Int J Adv Manuf Technol 112:763–773. https://doi.org/10.1007/s00170-020-06335-1

    Article  Google Scholar 

  12. Xu X, Zhao Y, Ma B, Zhang J, Zhang M (2014) Rapid grain refinement of 2024 Al alloy through recrystallization induced by electropulsing. Mater Sci Eng A 612:223–226. https://doi.org/10.1016/j.msea.2014.06.057

    Article  Google Scholar 

  13. Kapoor R, Sunil S, Bharat RG, Nagaraju S, Kolge TS, Sarkar SK, Sarita BA, Sharma A (2018) Electric current induced precipitation in maraging steel. Scripta Mater 154:16–19. https://doi.org/10.1016/j.scriptamat.2018.05.013

    Article  Google Scholar 

  14. Jiang YB, Tang GY, Shek CH, Liu W (2011) Microstructure and texture evolution of the cold-rolled AZ91 magnesium alloy strip under electropulsing treatment. J Alloy Compd 509:4308–4313. https://doi.org/10.1016/j.jallcom.2011.01.052

    Article  Google Scholar 

  15. Nguyen Tran HD, Oh HS, Hong ST, Han HN, Cao J, Ahn SH, Chun DM (2015) A review of electrically-assisted manufacturing. Int J Precis Eng Manuf Green Technol 2:365–376. https://doi.org/10.1007/s40684-015-0045-4

    Article  Google Scholar 

  16. Kuang J, Du X, Li X, Yang Y, Luo AA, Tang G (2016) Athermal influence of pulsed electric current on the twinning behavior of Mg–3Al–1Zn alloy during rolling. Scripta Mater 114:151–155. https://doi.org/10.1016/j.scriptamat.2015.12.014

    Article  Google Scholar 

  17. Kim MJ, Yoon S, Park S, Jeong HJ, Park JW, Kim K, Jo J, Heo T, Hong ST, Cho SH (2020) Elucidating the origin of electroplasticity in metallic materials. Appl Mater Today 21:100874. https://doi.org/10.1016/j.apmt.2020.100874

    Article  Google Scholar 

  18. Xiao H, Jiang S, Zhang K, Jia Y, Shi C, Lu Z, Jiang J (2020) Optimizing the microstructure and mechanical properties of a cold-rolled Al-Mg-Li alloy via electropulsing assisted recrystallization annealing and ageing. J Alloy Compd. https://doi.org/10.1016/j.jallcom.2019.152257

    Article  Google Scholar 

  19. Chen K, Zhan L, Yu W (2021) Rapidly modifying microstructure and mechanical properties of AA7150 Al alloy processed with electropulsing treatment. J Mater Sci Technol 95:172–179. https://doi.org/10.1016/j.jmst.2021.03.060

    Article  Google Scholar 

  20. Huang K, Cayron C, Logé RE (2017) The surprising influence of continuous alternating electric current on recrystallization behaviour of a cold-rolled Aluminium alloy. Mater Charact S1044580316312955. https://doi.org/10.1016/j.matchar.2017.04.036

    Article  Google Scholar 

  21. Xu X, Zhao Y, Wang X, Zhang Y, Ning Y (2016) Effect of rapid solid-solution induced by electropulsing on the microstructure and mechanical properties in 7075 Al alloy. Mater Sci Eng A 654:278–281. https://doi.org/10.1016/j.msea.2015.12.036

    Article  Google Scholar 

  22. Xiao H, Jiang S, Shi C, Zhang K, Lu Z, Jiang J (2019) Study on the microstructure evolution and mechanical properties of an Al-Mg-Li alloy aged by electropulsing assisted ageing processing. Mater Sci Eng A 756:442–454. https://doi.org/10.1016/j.msea.2019.04.049

    Article  Google Scholar 

  23. Maki SIM, Mori KI et al (2006) Thermo-mechanical treatment using resistance heating for production of fine grained heat-treatable aluminum alloy sheets. J Mater Process Technol 177:444–447. https://doi.org/10.1016/j.jmatprotec.2006.04.055

    Article  Google Scholar 

  24. Zheng YS, Tang GY, Kuang J, Zheng XP (2014) Effect of electropulse on solid solution treatment of 6061 aluminum alloy. J Alloy Compd 615:849–853. https://doi.org/10.1016/j.jallcom.2014.07.062

    Article  Google Scholar 

  25. Weichao WU, Wang Y, Wang J, Wei S (2014) Effect of electrical pulse on the precipitates and material strength of 2024 aluminum alloy. Mater Sci Eng A 608:190–198. https://doi.org/10.1016/j.msea.2014.04.071

    Article  Google Scholar 

  26. Xiaofeng Xu YZ, Ma B, Zhang M (2014) Rapid precipitation of T-phase in the 2024 aluminum alloy via cyclic electropulsing treatment. J Alloy Compd 610:506–510. https://doi.org/10.1016/j.jallcom.2014.05.063

    Article  Google Scholar 

  27. Jia SF (2014) Study on stress aging behavior under the effect of electrical pulses of 2219 aluminum alloy. Dissertation, Central South University

  28. Zhan L, Jia S, Zhang J (2014) Influence of electrical impulse aging on microstructure and mechanical properties of 7075 aluminum alloy. Trans Nonferrous Metals Soc China 24:600–605. https://doi.org/10.1016/S1003-6326(12)61677-X

    Article  Google Scholar 

  29. Ma Y, Zhan L, Xu Y, Tong C, Tan J (2017) Study on electric pulse assisted aging process of high-strength aluminum alloy plates. Aeronautl Manuf Technol Z2:42–47+53. https://doi.org/10.16080/j.issn1671-833x.2017.23/24.042

  30. Zeng W, Shen Y, Zhang N (2012) Rapid hardening induced by electric pulse annealing in nanostructured pure aluminum. Scripta Mater 66:147–150. https://doi.org/10.1016/j.scriptamat.2011.10.023

    Article  Google Scholar 

  31. Zhang W, Sui ML, Zhou YZ, Li DX (2002) TEM observation and EDS analysis of nano aluminum formation in super-hard aluminum alloy under electric pulse. J Chinese Electr Microsc Soc 21:667–668. https://doi.org/10.3969/j.issn.1000-6281.2002.05.101

    Article  Google Scholar 

  32. Wen W, Morris J (2004) The effect of cold rolling and annealing on the serrated yielding phenomenon of AA5182 aluminum alloy. Mater Sci Eng A 373:204–216. https://doi.org/10.1016/j.msea.2004.01.041

    Article  Google Scholar 

  33. Suresh M, Sharma A, More A, Kalsar R, Bisht A, Nayan N, Suwas S (2019) Effect of equal channel angular pressing (ECAP) on the evolution of texture, microstructure and mechanical properties in the Al-Cu-Li alloy AA2195. J Alloy Compd 785:972–983. https://doi.org/10.1016/j.jallcom.2019.01.161

    Article  Google Scholar 

  34. Estrin Y, Vinogradov A (2013) Extreme grain refinement by severe plastic deformation: a wealth of challenging science. Acta Mater 61:782–817. https://doi.org/10.1016/j.actamat.2012.10.038

  35. Huo W, Hou L, Lang Y, Cui H, Zhuang L, Zhang J (2015) Improved thermo-mechanical processing for effective grain refinement of high-strength AA 7050 Al alloy. Mater Sci Eng A 626:86–93. https://doi.org/10.1016/j.msea.2014.12.071

    Article  Google Scholar 

  36. Jiang Y, Tang G, Shek C, Zhu Y, Xu Z (2009) On the thermodynamics and kinetics of electropulsing induced dissolution of β-Mg17Al12 phase in an aged Mg–9Al–1Zn alloy. Acta Mater 57:4797–4808. https://doi.org/10.1016/j.actamat.2009.06.044

    Article  Google Scholar 

  37. Troitskii O, Likhtman V (1963) The anisotropy of the action of electron and γ radiation on the deformation of zinc single crystals in the brittle state. Soviet Physics Doklady 91

  38. Sprecher A, Mannan S, Conrad H (1986) On the mechanisms for the electroplastic effect in metals. Acta Metall 34:1145–1162. https://doi.org/10.1016/0001-6160(86)90001-5

    Article  Google Scholar 

  39. Xu Z, Tang G, Tian S, He J (2006) Research on the engineering application of multiple pulses treatment for recrystallization of fine copper wire. Mater Sci Eng A 424:300–306. https://doi.org/10.1016/j.msea.2006.03.012

    Article  Google Scholar 

  40. Conrad H, Karam N, Mannan S (1983) Effect of electric current pulses on the recrystallization of copper. Scr Metall 17:411–416. https://doi.org/10.1016/0036-9748(83)90183-7

    Article  Google Scholar 

  41. Conrad H, Guo Z, Sprecher A (1990) Effects of electropulse duration and frequency on grain growth in Cu. Scr Metall Mater 24:359–362. https://doi.org/10.1016/0956-716X(90)90270-Q

    Article  Google Scholar 

  42. Conrad H, Karam N, Mannan S (1984) Effect of prior cold work on the influence of electric current pulses on the recrystallization of copper. Scr Metall 18:275–280. https://doi.org/10.1016/0036-9748(84)90522-2

    Article  Google Scholar 

  43. Yuan T, Jiang J, Ma A, Wu Y, Yuan Y, Li C (2019) Simultaneously improving the strength and ductility of an Al-5.5 Mg-1.6 Li-0.1 Zr alloy via warm multi-pass ECAP. Mater Charact 151:530–541. https://doi.org/10.1016/j.matchar.2019.03.043

    Article  Google Scholar 

  44. Huo W, Hou L, Cui H, Zhuang L, Zhang J (2014) Fine-grained AA 7075 processed by different thermo-mechanical processings. Mater Sci Eng A 618:244–253. https://doi.org/10.1016/j.msea.2014.09.026

    Article  Google Scholar 

  45. Dang B, Zhang X, Chen Y, Chen C, Wang H, Liu F (2016) Breaking through the strength-ductility trade-off dilemma in an Al-Si-based casting alloy. Sci Rep 6:1–10. https://doi.org/10.1038/srep30874

    Article  Google Scholar 

  46. Zhang X, Huang L, Zhang B, Chen Y, Duan S, Liu G, Yang C, Liu F (2019) Enhanced strength and ductility of A356 alloy due to composite effect of near-rapid solidification and thermo-mechanical treatment. Mater Sci Eng A 753:168–178. https://doi.org/10.1016/j.msea.2019.03.039

    Article  Google Scholar 

  47. Murayama M, Hono K (1999) Pre-precipitate clusters and precipitation processes in Al–Mg–Si alloys. Acta Mater 47:1537–1548. https://doi.org/10.1016/S1359-6454(99)00033-6

    Article  Google Scholar 

  48. Edwards G, Stiller K, Dunlop G, Couper M (1998) The precipitation sequence in Al–Mg–Si alloys. Acta Mater 46:3893–3904. https://doi.org/10.1016/S1359-6454(98)00059-7

    Article  Google Scholar 

  49. Berg L, Gjønnes J, Vx H, Li X, Knutson-Wedel M, Schryvers D, Wallenberg L (2001) GP-zones in Al–Zn–Mg alloys and their role in artificial aging. Acta Mater 49:3443–3451. https://doi.org/10.1016/S1359-6454(01)00251-8

    Article  Google Scholar 

  50. Cheng S, Zhao Y, Zhu Y, Ma E (2007) Optimizing the strength and ductility of fine structured 2024 Al alloy by nano-precipitation. Acta Mater 55:5822–5832. https://doi.org/10.1016/j.actamat.2007.06.043

    Article  Google Scholar 

  51. Zhou M, Yi D, Yin D, Hong T, Huang D (2010) Effect of electric field on kinetics of formation of S phase in 2E12 aluminum alloy. Trans Nonferrous Met Soc China 20:1290–1293. https://doi.org/10.1016/S1875-5372(10)60130-0

    Article  Google Scholar 

  52. Huang X (2009) Tailoring dislocation structures and mechanical properties of nanostructured metals produced by plastic deformation. Scripta Mater 60:1078–1082. https://doi.org/10.1016/j.scriptamat.2009.02.018

    Article  Google Scholar 

  53. Yu C, Kao P, Chang C (2005) Transition of tensile deformation behaviors in ultrafine-grained aluminum. Acta Mater 53:4019–4028. https://doi.org/10.1016/j.actamat.2005.05.005

    Article  Google Scholar 

  54. Ovid’Ko I, Valiev R, Zhu Y (2018) Review on superior strength and enhanced ductility of metallic nanomaterials. Prog Mater Sci 94:462–540. https://doi.org/10.1016/j.pmatsci.2018.02.002

    Article  Google Scholar 

  55. Wu X, Yang M, Yuan F, Wu G, Wei Y, Huang X, Zhu Y (2015) Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proc Natl Acad Sci 112:14501–14505. https://doi.org/10.1073/pnas.1517193112

    Article  Google Scholar 

  56. Yao Y, Tang Z-J, Du H, Jiang S-S, Chen J, Zhang J-T (2017) Influences of electric impulse on the mechanical properties of 2024 aluminum alloy. J Netshape Form Eng

  57. Du H, Tang Z, Zhang J, Jiang S, Chen J (2018) Experimental study on the mechanical properties of 6063T4 aluminum alloy under electropulsing-assisted tensile. Mater Sci Technol 26:54–61. https://doi.org/10.11951/j.issn.1005-0299.20170202

  58. Xu H, Liu X, Zhang D, Zhang X (2019) Minimizing serrated flow in Al-Mg alloys by electroplasticity. J Mater Sci Technol 35:1108–1112. https://doi.org/10.1016/j.jmst.2018.12.007

    Article  Google Scholar 

  59. Ross CD, Irvin DB, Roth JT (2007) Manufacturing aspects relating to the effects of direct current on the tensile properties of metals. J Eng Mater Technol 129:342–347. https://doi.org/10.1115/1.2712470

    Article  Google Scholar 

  60. Bumgardner CH, Croom BP, Song N, Zhang Y, Li X (2020) Low energy electroplasticity in aluminum alloys. Mater Sci Eng A 798:140235. https://doi.org/10.1016/j.msea.2020.140235

    Article  Google Scholar 

  61. Kim M, Song J, Huh H (2017) Effect of pre-strain on tensile properties of Al5052-H32 under an electropulsing condition. Procedia Eng 207:371–376. https://doi.org/10.1016/j.proeng.2017.10.790

    Article  Google Scholar 

  62. Zhao K, Rong F, Wang L (2016) The effect of electric current and strain rate on serrated flow of sheet aluminum alloy 5754. J Mater Eng Perform 25:781–789. https://doi.org/10.1007/s11665-016-1913-y

    Article  Google Scholar 

  63. Salandro WA, Jones JJ, McNeal TA, Roth JT, Hong S-T, Smith MT (2010) Formability of Al 5xxx sheet metals using pulsed current for various heat treatments. J Manuf Sci Eng 132. https://doi.org/10.1115/1.4002185

    Article  Google Scholar 

  64. Kim MJ, Lee MG, Hariharan K, Hong ST, Choi IS, Kim D, Oh KH, Han HN (2017) Electric current–assisted deformation behavior of Al-Mg-Si alloy under uniaxial tension. Int J Plast 94:148–170. https://doi.org/10.1016/j.ijplas.2016.09.010

    Article  Google Scholar 

  65. Zhang H, Zhang X (2019) Hall-Petch relationship in electrically pulsed Al–Zn–Mg alloys. Adv Eng Mater 21:1900638. https://doi.org/10.1002/adem.201900638

    Article  Google Scholar 

  66. Zhang H, Zhang X (2020) Softening behavior of Al-Zn-Mg alloys with different strengthening mechanisms in a coupled field. Mater Sci Eng A 771:138582. https://doi.org/10.1016/j.msea.2019.138582

    Article  Google Scholar 

  67. Zhao K, Fan R (2016) The effect of pulse electric current on the mechanical properties and fracture behaviors of aluminum alloy AA5754. J Eng Mater Technol 138:041009. https://doi.org/10.1115/1.4033635

    Article  Google Scholar 

  68. Hariharan K, Lee M-G, Kim M-J, Han HN, Kim D, Choi S (2015) Decoupling thermal and electrical effect in an electrically assisted uniaxial tensile test using finite element analysis. Metall Mater Trans A 46:3043–3051. https://doi.org/10.1007/s11661-015-2879-3

    Article  Google Scholar 

  69. Xiaofeng Xu YZ, Ma B, Zhang M (2015) Electropulsing induced evolution of grain-boundary precipitates without loss of strength in the 7075 Al alloy. Mater Charact 105:90–94. https://doi.org/10.1016/j.matchar.2015.05.007

    Article  Google Scholar 

  70. Jung J, Ju Y, Morita Y, Toku Y (2016) Effect of pulsed electric current on the growth behavior of fatigue crack in Al alloy. Procedia Struct Integr 2:2989–2993. https://doi.org/10.1016/j.prostr.2016.06.374

    Article  Google Scholar 

  71. Orallo A, Trinidad J, Galdos L, Argandoña EDS, Mendiguren J (2020) Aluminum springback reduction by post-forming electric pulses. https://doi.org/10.1016/j.promfg.2020.04.285

    Article  Google Scholar 

  72. Hongrui D, Xiaoqiang L, Haibo W, Dongsheng L, Yanfeng Y (2021) The effect of electroplasticity on the flow behavior of AA7075 in T6 Temper 857–865

  73. Jiang Y, Guan L, Tang G, Shek C, Zhang Z (2011) Influence of electropulsing treatment on microstructure and mechanical properties of cold-rolled Mg–9Al–1Zn alloy strip. Mater Sci Eng A 528:5627–5635. https://doi.org/10.1016/j.msea.2011.03.095

    Article  Google Scholar 

  74. Ma B, Zhao Y, Bai H, Ma J, Zhang J, Xu X (2013) Gradient distribution of mechanical properties in the high carbon steel induced by the detour effect of the pulse current. Mater Des 49:168–172. https://doi.org/10.1016/j.matdes.2013.02.015

    Article  Google Scholar 

  75. Yinying S, Youlu H, Xiaojian W, Xueyang Z, Lianxi C, Hanyu Z, James W, Christopher B, Wei L (2018) Application of high-density electropulsing to improve the performance of metallic materials: mechanisms, microstructure and properties. Materials 11:185. https://doi.org/10.3390/ma11020185

    Article  Google Scholar 

  76. Li X, Ye X, Song G (2014) Effect of recovering damage and improving microstructure in the titanium alloy strip under high-energy electropulses. J Alloy Compd 616:173–183. https://doi.org/10.1016/j.jallcom.2014.07.143

    Article  Google Scholar 

  77. Okazaki K, Kagawa M, Conrad H (1978) A study of the electroplastic effect in metals. Scr Metall 12:1063–1068. https://doi.org/10.1016/0036-9748(78)90026-1

    Article  Google Scholar 

  78. Pan L, He W, Gu B (2015) Non-uniform carbon segregation induced by electric current pulse under residual stresses. J Mater Process Technol 247–254. https://doi.org/10.1016/j.jmatprotec.2015.07.017

    Article  Google Scholar 

  79. Song H, Wang ZJ, Gao TJ (2007) Effect of high density electropulsing treatment on formability of TC4 titanium alloy sheet. Trans Nonferrous Metals Soc China 17:87–92. https://doi.org/10.1016/S1003-6326(07)60053-3

    Article  Google Scholar 

  80. Stepanov GV, Babutskii AI, Mameev IA (2004) High-density pulse current-induced unsteady stress-strain state in a long rod. Strength Mater 36:377–381. https://doi.org/10.1023/B:STOM.0000041538.10830.34

    Article  Google Scholar 

  81. Stepanov G, Babutskii A, Mameev I, Olisov A (2005) Pulse current effect on stress levels in a metal strip in tension. Strength Mater 37:593–597. https://doi.org/10.1007/s11223-006-0006-9

    Article  Google Scholar 

  82. Stepanov GV, Babutskii AI, Mameev IA, Olisov AN (2006) Analysis of pulse current-induced tensile stress relaxation. Strength Mater 38:84–91. https://doi.org/10.1007/s11223-006-0019-4

    Article  Google Scholar 

  83. Karpinskii DN, Sannikov SV (2001) Effect of electric current on the evolution of plastic strain near a crack tip. J Appl Mech Tech Phys 42:884–889. https://doi.org/10.1023/A:1017917231665

    Article  Google Scholar 

  84. Karpinskii DN, Sannikov SV (2001) Effect of electric current on migration of point defects near a crack tip. J Appl Mech Tech Phys 42:1073–1077. https://doi.org/10.1023/A:1012586416125

    Article  Google Scholar 

  85. Antolovich SD, Conrad H (2004) The effects of electric currents and fields on deformation in metals, ceramics, and ionic materials: an interpretive survey. Advanced Manufacturing Processes 19:587–610. https://doi.org/10.1081/AMP-200028070

    Article  Google Scholar 

  86. Kim MJ, Lee K, Oh KH, Choi IS, Yu HH, Hong ST, Han HN (2014) Electric current-induced annealing during uniaxial tension of aluminum alloy. Scripta Mater 75:58–61. https://doi.org/10.1016/j.scriptamat.2013.11.019

    Article  Google Scholar 

  87. Li X, Li X, Jing Z, Ye X, Tang G (2016) Microstructure and texture evolution of cold-rolled Mg-3Al-1Zn alloy by electropulse treatment stimulating recrystallization. Scripta Mater 112:23–27. https://doi.org/10.1016/j.scriptamat.2015.09.001

    Article  Google Scholar 

  88. Xiao H, Lu Z, Zhang K, Jiang S, Shi C (2020) Achieving outstanding combination of strength and ductility of the Al-Mg-Li alloy by cold rolling combined with electropulsing assisted treatment. Mater Des 186:108279. https://doi.org/10.1016/j.matdes.2019.108279

    Article  Google Scholar 

  89. Hgab C, Xun Z, Jfab C, Hua Z, Qiang Z, Wlab C, Hd D, Bxab C (2019) Effect of electropulsing treatment on static recrystallization behavior of cold-rolled magnesium alloy ZK60 with different reductions. J Mater Sci Technol 35:1113–1120. https://doi.org/10.1016/j.jmst.2018.11.008

    Article  Google Scholar 

  90. Love GR (1964) Dislocation pipe diffusion. Acta Metall 12:731–737. https://doi.org/10.1016/0001-6160(64)90220-2

    Article  Google Scholar 

  91. Xiao H, Zhang K, Shi C, Lu Z, Jiang J (2019) Influence of electropulsing treatment combined with pre-deformation on ageing behavior and mechanical properties of 5A90 Al-Li alloy. J Alloy Compd. https://doi.org/10.1016/j.jallcom.2019.01.103

    Article  Google Scholar 

  92. Zhou C, Zhan L, Li H, Chen F, Yan D (2021) Mechanism of an acceleration in T1 precipitation kinetics in an Al-Cu-Li alloy by electropulsing. Vacuum 194:110558. https://doi.org/10.1016/j.vacuum.2021.110558

    Article  Google Scholar 

  93. Salandro WA, Bunget CJ, Mears L (2011) Several factors affecting the electroplastic effect during an electrically-assisted forming process. J Manuf Sci Eng 133. https://doi.org/10.1115/1.4004950

    Article  Google Scholar 

  94. Molotskii MI (2000) Theoretical basis for electro- and magnetoplasticity. Mater Sci Eng A 287:248–258. https://doi.org/10.1016/S0921-5093(00)00782-6

    Article  Google Scholar 

  95. Dimitrov NK, Liu Y, Horstemeyer M (2020) Electroplasticity: a review of mechanisms in electro-mechanical coupling of ductile metals. Mech Adv Mater Struct 1–12. https://doi.org/10.1080/15376494.2020.1789925

    Article  Google Scholar 

  96. Lahiri A, Shanthraj P, Roters F (2019) Understanding the mechanisms of electroplasticity from a crystal plasticity perspective. Modell Simul Mater Sci Eng 27:085006. https://doi.org/10.1088/1361-651X/ab43fc

    Article  Google Scholar 

  97. Dobras D, Bruschi S, Simonetto E, Rutkowska-Gorczyca M, Ghiotti A (2020) The effect of direct electric current on the plastic behavior of AA7075 aluminum alloy in different states of hardening. Materials 14:73. https://doi.org/10.3390/ma14010073

    Article  Google Scholar 

  98. Lee T, Magargee J, Ng MK, Cao J (2017) Constitutive analysis of electrically-assisted tensile deformation of CP-Ti based on non-uniform thermal expansion, plastic softening and dynamic strain aging. Int J Plast 94:44–56. https://doi.org/10.1016/j.ijplas.2017.02.012

    Article  Google Scholar 

  99. Rudolf C, Goswami R, Kang W, Thomas J (2021) Effects of electric current on the plastic deformation behavior of pure copper, iron, and titanium. Acta Mater 209:116776. https://doi.org/10.1016/j.actamat.2021.116776

    Article  Google Scholar 

  100. Okazaki K, Kagawa M, Conrad H (1980) An evaluation of the contributions of skin, pinch and heating effects to the electroplastic effect in titatnium. Mater Sci Eng 45:109–116. https://doi.org/10.1016/0025-5416(80)90216-5

    Article  Google Scholar 

  101. Olabi AG, Grunwald A (2008) Design and application of magnetostrictive materials. Mater Des 29:469–483. https://doi.org/10.1016/j.matdes.2006.12.016

    Article  Google Scholar 

  102. Ruszkiewicz BJ, Laine M, Roth JT (2018) Investigation of heterogeneous Joule heating as the explanation for the transient electroplastic stress drop in pulsed tension of 7075–T6 aluminum. J Manuf Sci Eng 140:091014. https://doi.org/10.1115/1.4040349

    Article  Google Scholar 

  103. Lv Z, Zhou Y, Zhan L, Zang Z, Qin S (2021) Electrically assisted deep drawing on high-strength steel sheet. Int J Adv Manuf Technol 112:763–773. https://doi.org/10.1007/s00170-020-06335-1

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (No. 2017YFB0306200) and the National Natural Science Foundation of China (52075025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Qiang Li.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All the authors have reached an agreement for publication.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, HR., Li, XQ., Li, Y. et al. A review of electrically assisted heat treatment and forming of aluminum alloy sheet. Int J Adv Manuf Technol 120, 7079–7099 (2022). https://doi.org/10.1007/s00170-022-08996-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-08996-6

Keywords

Navigation