Skip to main content
Log in

Experimental study of the dynamic behaviour of loaded polyurethane foam free fall investigation and evaluation of microstructure

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

We aim to maintain as much control over the microstructure development during the manufacture of polyurethane foam with a specific density. As a result, the finished product contains the shock absorber’s required characteristics. That is why polyurethane foam loaded with zinc oxide and silica must sustain the cellular structure and strengthen it. First, mechanical characterization was carried out utilizing a dynamic drop impact test conducted on locally developed and constructed equipment. Polyurethane foams’ mechanical properties rely on their density, cell structure (size and shape), and the fraction of open or closed cells. Within the cell structure, the foam may be directed preferentially. Following that, Raman spectroscopy and SEM investigation to visualize the semi-opened cells of the cellular polymer. The cellular polymer appears to possess permanent, regular cellular structures with a high degree of reversibility in terms of overlap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and material

The authors confirm that this paper's experimental data and materials are available.

Code availability

Applicable.

References

  1. Usta N (2012) Investigation of fire behavior of rigid polyurethane foams containing fly ash and intumescent flame retardant by using a cone calorimeter. J Appl Polym Sci 124:3372–3382. https://doi.org/10.1002/app.35352

    Article  Google Scholar 

  2. Jin FL, Zhao M, Park M, Park SJ (2019) Recent trends of foaming in polymer processing: a review. Polymers (Basel) 11:953. https://doi.org/10.3390/polym11060953

    Article  Google Scholar 

  3. Peyrton J, Avérous L (2021) Structure-properties relationships of cellular materials from biobased polyurethane foams. Mater Sci Eng R Reports 145:100608. https://doi.org/10.1016/j.mser.2021.100608

    Article  Google Scholar 

  4. Tao XF, Zhao YY (2012) Compressive failure of Al alloy matrix syntactic foams manufactured by melt infiltration. Mater Sci Eng A 549:228–232. https://doi.org/10.1016/j.msea.2012.04.047

    Article  Google Scholar 

  5. Alba J, López E, del Rey R et al (2019) Empiric acoustic modeling of open-cell polyolefin foams. In: INTER-NOISE 2019 MADRID - 48th International Congress and Exhibition on Noise Control Engineering. Institute of Noise Control Engineering 8003–8014

  6. Quiles-Carrillo L, Montanes N, Fombuena V et al (2020) Enhancement of the processing window and performance of polyamide 1010/bio-based high-density polyethylene blends by melt mixing with natural additives. Polym Int 69:61–71. https://doi.org/10.1002/pi.5919

    Article  Google Scholar 

  7. Kim MS, Kim JD, Kim JH, Lee JM (2021) Mechanical performance degradation of glass fiber-reinforced polyurethane foam subjected to repetitive low-energy impact. Int J Mech Sci 194:106188. https://doi.org/10.1016/j.ijmecsci.2020.106188

    Article  Google Scholar 

  8. Marsavina L, Constantinescu DM, Linul E et al (2016) Experimental and numerical crack paths in PUR foams. Eng Fract Mech 167:68–83. https://doi.org/10.1016/j.engfracmech.2016.03.043

    Article  Google Scholar 

  9. Swallowe GM (1999) Mechanical properties and testing of polymers. Springer Science & Business Media

  10. Ruiz-Herrero JL, Rodríguez-Pérez MA, De Saja JA (2005) Design and construction of an instrumented falling weight impact tester to characterise polymer-based foams. Polym Test 24:641–647. https://doi.org/10.1016/j.polymertesting.2005.03.011

    Article  Google Scholar 

  11. Joodaky A, Batt GS, Gibert JM (2020) Prediction of cushion curves of polymer foams using a nonlinear distributed parameter model. Packag Technol Sci 33:3–14. https://doi.org/10.1002/pts.2473

    Article  Google Scholar 

  12. STANDARD B (2007) Motorcyclists’ protective clothing against mechanical impact

  13. Flores-Johnson EA, Li QM (2011) Low velocity impact on polymeric foams. J Cell Plast 47:45–63. https://doi.org/10.1177/0921374010384956

    Article  Google Scholar 

  14. Mills NJ, Fitzgerald C, Gilchrist A, Verdejo R (2003) Polymer foams for personal protection: cushions, shoes and helmets. Compos Sci Technol 63:2389–2400. https://doi.org/10.1016/S0266-3538(03)00272-0

    Article  Google Scholar 

  15. Boumdouha N, Boudiaf A, Safidine Z (2019) Mechanical and chemical characterizations of filled polyurethane foams used for non-lethal projectiles. In: 10 the European Symposium on Non-Lethal Weapons EWG-NLW. Royal Military Academy, Brussels, Belgium 68

  16. BOUMDOUHA Noureddine, SAFIDINE Zitouni, BOUDIAF Achraf et al (2018) Élaboration et caractérisation mécanique des mousses polyuréthanes modifiés. In: Fourth International Conference on Energy, Materials, Applied Energetics and Pollution ICEMAEP2018. UNIVERSITÉ FRÈRES MENTOURI CONSTANTINE 1, Constantine, Algeria, pp 136–142

  17. BOUMDOUHA Noureddine, SAFIDINE Zitouni, BOUDIAF Achraf et al (2011) Élaboration et caractérisation mécanique des mousses polymères : application aux projectiles non létaux. In: 11 th Days of Mechanics JM’11–EMP. Military Polytechnic School (EMP), Bordj El Bahri, Algeria, pp 24–33

  18. Shim VPW, Tu ZH, Lim CT (2000) Two-dimensional response of crushable polyurethane foam to low velocity impact. Int J Impact Eng 24:703–731. https://doi.org/10.1016/S0734-743X(99)00149-9

    Article  Google Scholar 

  19. Chen K, Tian C, Lu A et al (2014) Effect of SiO2 on rheology, morphology, thermal, and mechanical properties of high thermal stable epoxy foam. J Appl Polym Sci 131:1–2. https://doi.org/10.1002/app.40068

    Article  Google Scholar 

  20. de Mello D, Pezzin SH, Amico SC (2009) The effect of post-consumer PET particles on the performance of flexible polyurethane foams. Polym Test 28:702–708. https://doi.org/10.1016/j.polymertesting.2009.05.014

    Article  Google Scholar 

  21. Plucknett KP, Pomfret SJ, Normand V et al (2001) Dynamic experimentation on the confocal laser scanning microscope: application to soft-solid, composite food materials. J Microsc 201:279–290. https://doi.org/10.1046/j.1365-2818.2001.00837.x

    Article  MathSciNet  Google Scholar 

  22. BOUMDOUHA Noureddine, SAFIDINE Zitouni, BOUDIAF Achraf et al (2018) Manufacture of polyurethane foam with a certain density. In: The International Conference on Recent Advances in Robotics and Automation ICRARE’18. C.E.S International Joint Conferences, Monastir – Tunisia 21–30

  23. Lopez-Gonzalez E, Muñoz-Pascual S, Saiz-Arroyo C, Rodriguez-Perez MA (2020) Effect of gas-phase tortuosity on the mechanical properties of low-density polyolefin open-cell foams at low- and high-strain rates. J Appl Polym Sci 137:48468. https://doi.org/10.1002/app.48468

    Article  Google Scholar 

  24. Hwang U, Lee B, Oh B et al (2022) Hydrophobic lignin/polyurethane composite foam: an eco-friendly and easily reusable oil sorbent. Eur Polym J 110971:1–2. https://doi.org/10.1002/mame.202100600

    Article  Google Scholar 

  25. Jun L, Qin Z, Mi H et al (2022) Fabrication of thermoplastic polyurethane foams with wrinkled pores and superior energy absorption properties by CO2 foaming and fast chilling. Macromol Mater Eng 307:2100600. https://doi.org/10.1002/mame.202100600

    Article  Google Scholar 

  26. Teodorczyk A, Lee JHS (1995) Detonation attenuation by foams and wire meshes lining the walls. Shock Waves 4:225–236. https://doi.org/10.1007/BF01414988

    Article  Google Scholar 

  27. St-Pierre L (2012) The quasi-static and dynamic responses of metallic sandwich structures

  28. Muñoz-Pascual S, Saiz-Arroyo C, Vananroye A et al (2021) Effect on the impact properties of adding long-chain branched polypropylene in polypropylene-polyolefin elastomer cellular polymers produced by core-back injection molding. Macromol Mater Eng 306:2000728. https://doi.org/10.1002/mame.202000728

    Article  Google Scholar 

  29. Linul E, Marşavina L, Vălean C, Bănică R (2020) Static and dynamic mode I fracture toughness of rigid PUR foams under room and cryogenic temperatures. Eng Fract Mech 225:106274. https://doi.org/10.1016/j.engfracmech.2018.12.007

    Article  Google Scholar 

  30. Briody C (2012) The characterisation and numerical modelling of viscoelastic polyurethane foams for use in custom wheelchair seating

  31. Rodríguez-Pérez MA (2005) Crosslinked polyolefin foams: production, structure, properties, and applications. Adv Polym Sci 184:97–126. https://doi.org/10.1007/b136244

    Article  Google Scholar 

  32. Chai GB, Manikandan P (2014) Low velocity impact response of fibre-metal laminates - a review. Compos Struct 107:363–381. https://doi.org/10.1016/j.compstruct.2013.08.003

    Article  Google Scholar 

  33. Christenson EM, Anderson JM, Hiltner A (2007) Biodegradation mechanisms of polyurethane elastomers? Corros Eng Sci Technol 42:312–323. https://doi.org/10.1179/174327807X238909

    Article  Google Scholar 

  34. Rahman MM (2020) Polyurethane/Zinc oxide (PU/ZnO) composite—synthesis, protective property and application. Polymers (Basel) 12:1535

    Article  Google Scholar 

  35. Cao X, Lee LJ, Widya T, Macosko C (2005) Polyurethane/clay nanocomposites foams: processing, structure and properties. Polymer (Guildf) 46:775–783

    Article  Google Scholar 

  36. Wang G, Yu M, Feng X (2021) Carbon materials for ion-intercalation involved rechargeable battery technologies. Chem Soc Rev 50:2388–2443. https://doi.org/10.1039/d0cs00187b

    Article  Google Scholar 

  37. Mirabedini SM, Khodabakhshi K (2017) Nanocomposites of PU polymers filled with spherical fillers. In: Polyurethane Polymers: Composites and Nanocomposites. Elsevier, pp 135–172

  38. Członka S, Strąkowska A, Kairytė A, Kremensas A (2020) Nutmeg filler as a natural compound for the production of polyurethane composite foams with antibacterial and anti-aging properties. Polym Test 86:106479. https://doi.org/10.1016/j.polymertesting.2020.106479

    Article  Google Scholar 

  39. Stefani PM, Barchi AT, Sabugal J, Vazquez A (2003) Characterization of epoxy foams. J Appl Polym Sci 90:2992–2996. https://doi.org/10.1002/app.13006

    Article  Google Scholar 

  40. Ταραντίλης ΠΑ (1988) Φασματοσκοπία Raman (Raman Spectroscopy ) Φασματοσκοπία Raman ( Raman Spectroscopy ). Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons Inc, Hoboken, NJ, USA, pp 3–4

    Google Scholar 

  41. Buzzini P, Suzuki E (2016) Forensic applications of Raman spectroscopy for the in situ analyses of pigments and dyes in ink and paint evidence. J Raman Spectrosc 47:16–27. https://doi.org/10.1002/jrs.4818

    Article  Google Scholar 

  42. Pincus G (1965) Introduction to Infrared and Raman Spectroscopy. Elsevier

    Google Scholar 

  43. Struve W, Mills I (1990) Fundamentals of molecular spectroscopy. Vib Spectrosc 1:103–104. https://doi.org/10.1016/0924-2031(90)80014-u

    Article  Google Scholar 

  44. Banerjee R, Ray SS (2020) Foamability and special applications of microcellular thermoplastic polymers: a review on recent advances and future direction. Macromol Mater Eng 305:2000366. https://doi.org/10.1002/mame.202000366

    Article  Google Scholar 

  45. Mushkin YI, Smirnova NF, Tsigin BM, Finkel’shtein AI (1971) IR and UV spectea of diaminodiphenylmethane isomers and the corresponding diisocyanates. J Appl Spectrosc 15:1623–1627. https://doi.org/10.1007/BF00607057

    Article  Google Scholar 

  46. Stephenson CV, Coburn WC, Wilcox WS (1961) The vibrational spectra and assignments of nitrobenzene, phenyl isocyanate, phenyl isothiocyanate, thionylaniline and anisole. Spectrochim Acta 17:933–946. https://doi.org/10.1016/0371-1951(61)80029-5

    Article  Google Scholar 

  47. Janik H, Pałys B, Petrovic ZS (2003) Multiphase-separated polyurethanes studied by micro-Raman spectroscopy. Macromol Rapid Commun 24:265–268. https://doi.org/10.1002/marc.200390039

    Article  Google Scholar 

  48. Spedding H (1964) Infrared spectroscopy and carbohydrate chemistry. Adv Carbohydr Chem 19:23–49. https://doi.org/10.1016/S0096-5332(08)60278-7

    Article  Google Scholar 

  49. Nofar M, Park CB (2014) Poly (lactic acid) foaming. Prog Polym Sci 39:1721–1741

    Article  Google Scholar 

  50. Lee SY, Hanna MA (2009) Tapioca starch-Poly(lactic acid)-Cloisite 30B nanocomposite foams. Polym Compos 30:665–672. https://doi.org/10.1002/pc.20664

    Article  Google Scholar 

  51. Gibson LJ, Ashby MF, Gibson LJ et al (1997) Cellular solids: structure and properties. Cell Solids Struct Prop Second Ed 9:1–510. https://doi.org/10.1017/CBO9781139878326

    Article  MATH  Google Scholar 

  52. Huber AT, Gibson LJ (1988) Anisotropy of foams. J Mater Sci 23:3031–3040. https://doi.org/10.1007/BF00547486

    Article  Google Scholar 

  53. Jackson CL, Shaw MT, Aubert JH (1991) The linear elastic properties of microcellular foams. Polymer (Guildf) 32:221–225. https://doi.org/10.1016/0032-3861(91)90005-4

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Materials Engineering Laboratory (LGM) team, at the Polytechnic Military School EMP, in collaboration with the Polymer Materials Engineering laboratory of Lyon IMP/INSA, for supervising this work. I especially want to thank the Mechanical Design and Fabrication CFM team for their contributions to the research.

Funding

This research was funded by the General Directorate of Scientific Research and Technological Development DG-RSDT grant number #Projects PNE/2019-EMP, and was funded by the Ministry of Higher Education and Scientific Research (MESRS).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and methodology B.N., S.Z., and G.J.-F.; software, B.N.; formal analysis D.R.-J.; investigation, B.A. and G.J.-F.; resources, G.J.-F. and B.N.; data curation, B.N. and G.J.-F.; writing—original draft preparation, B.N., S.Z., B.A., and G.J.-F.; writing—review and editing, B.N., G.J.-F., S.Z., and B.A.; visualization, supervision, project administration, S.Z. and G.J.-F.; funding acquisition, B.N. and B.A. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Noureddine Boumdouha.

Ethics declarations

Ethics approval

This paper does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

All of the authors agree to publish the submit manuscript.

Consent for publication

All of the authors agree to publish the submitted manuscript.

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2698 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boumdouha, N., Safidine, Z., Boudiaf, A. et al. Experimental study of the dynamic behaviour of loaded polyurethane foam free fall investigation and evaluation of microstructure. Int J Adv Manuf Technol 120, 3365–3381 (2022). https://doi.org/10.1007/s00170-022-08963-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-08963-1

Keywords

Navigation