Skip to main content
Log in

Selecting an appropriate supervised machine learning algorithm for predictive maintenance

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Predictive maintenance refers to predicting malfunctions using data from monitoring equipment and process performance measurements. Machine learning algorithms and techniques are often used to analyze equipment monitoring data. Machine learning is the process in which a computer can work more precisely by collecting and analyzing data. It is often the case that machine learning algorithms use supervised learning, in which labelled data is used to feed the algorithm. However, there are many supervised machine learning algorithms available. Therefore, choosing the best-supervised machine learning algorithm to resolve predictive maintenance issues is not trivial.

This paper aims to increase the performance of predictive maintenance and achieve its goals by selecting the most suitable supervised machine learning algorithm.

Based on the most commonly used criteria in research articles, we selected three supervised machine learning algorithms from a comparative study: Random forest, Decision tree and KNN. We then tested selected algorithms on data from real-world and simulation scenarios. Finally, we conducted the experiment based on vibration analysis and reliability evaluation. We noticed that Random forests and Decision trees obtained slightly the same performance. KNN is a better classification algorithm for extensive volumes of data; on the contrary, Random forest performs better in the case of small datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

Availability of data and material

Data used for simulation has been downloaded from: https://www.kaggle.com/

Code availability

The source code is freely available at: https://github.com/fettah140/regression_classification

Notes

  1. https://sonatrach.com/liquefaction-et-separation

  2. https://www.bkvibro.com/fileadmin/mediapool/Internet/Instructions/Portable_instruments/VT-80/VT80_140714_FR.pdf

  3. https://www.iso.org/fr/standard/56782.html

  4. The PHD is a software that enables the collection, storage, and analysis of process data. It provides users with tools to convert process data into valuable information that can be used to detect mistakes and improve processes.

  5. https://www.kaggle.com/raghupalem/bill_authentication

  6. https://www.kaggle.com/harinir/petrol-consumption

References

  1. Abdallah K (2007) Techniques de Maintenance Prédictive pour l’Amélioration de la disponibilité des Installations, Doctoral dissertation. Université de Annaba-Badji Mokhtar

  2. Alsharif MH, Kelechi AH, Yahya K, Chaudhry SA (2020) Machine learning algorithms for smart data analysis in the Internet of things environment: taxonomies and research trends. Symmetry 12(1):88

    Article  Google Scholar 

  3. Asad A (2016) Three types of Machine Learning Algorithms

  4. Baptista M, Sankararaman S, de Medeiros IP, Nascimento C Jr, Prendinger H, Henriques EM (2018) Forecasting fault events for predictive maintenance using data-driven techniques and ARMA modelling. Comput Ind Eng 115:41–53

    Article  Google Scholar 

  5. Benchettouh SE (2019) Elaboration d’un système de prédiction des pannes et de planification des maintenances. Doctoral dissertation, universite mohamed boudiaf-m’sila-faculte mathematiques et de l’informatique

  6. Bensana T (2008) Diagnistic des défaillances basé sur l'analyse vibratoire d'une turbine à vapeur. Doctoral dissertation, Université de Annaba-Badji Mokhtar

  7. Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press

    MATH  Google Scholar 

  8. Boukili A, El Hammoumi M (2015) Preventive maintenance by vibratory analysis: case study. Int J Eng Res 1:450–455

    Article  Google Scholar 

  9. Carvalho TP, Soares FA, Vita R, Francisco RD, Basto JP, Alcalá SG (2019) A systematic literature review of machine learning methods applied to predictive maintenance. Comput Ind Eng 137:106024

  10. Cielen D, Meysman AD, Ali M (2016) Introducing data science: big data, machine learning, and more, using Python tools. Manning Publications Co.

  11. Çınar ZM, Abdussalam Nuhu A, Zeeshan Q, Korhan O, Asmael M, Safaei B (2020) Machine learning in predictive maintenance towards sustainable smart manufacturing in industry 4.0. Sustainability 12(19):8211

  12. Dey A (2016) Machine learning algorithms: a review. International Journal of Computer Science and Information Technologies 7(3):1174–1179

    Google Scholar 

  13. Djebili O (2013) Contribution à la maintenance prédictive par analyse vibratoire des composants mécaniques tournants. Application aux butées à billes soumises à la fatigue de contact de roulement (Doctoral dissertation, Reims)

  14. He Y, Gu C, Chen Z, Han X (2017) Integrated predictive maintenance strategy for manufacturing systems by combining quality control and mission reliability analysis. Int J Prod Res 55(19):5841–5862

    Article  Google Scholar 

  15. Hormozi H, Hormozi E, Nohooji HR (2012) The classification of the applicable machine learning methods in robot manipulators. Int J Mach 2(5):560

    Google Scholar 

  16. Jardine AK, Lin D, Banjevic D (2006) A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech Syst Signal Process 20(7):1483–1510

    Article  Google Scholar 

  17. Jensen FV (1996) An introduction to Bayesian networks. London: UCL Press. 210:1–178

  18. Kebabsa T, Ouelaa N, Djebala A (2018) Experimental vibratory analysis of a fan motor in industrial environment. Int J Adv Manuf Syst 98(9):2439–2447

    Article  Google Scholar 

  19. Kumar AR, Krishnan V (2017) A study on system reliability in Weibull distribution. Methods 5(3):23–28

    Google Scholar 

  20. Lee D, Pan R (2017) Predictive maintenance of the complex system with multi-level reliability structure. Int J Prod Res 55(16):4785–4801

    Article  Google Scholar 

  21. Motaghare O, Pillai AS, Ramachandran KI (2018) Predictive maintenance architecture. In 2018 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC) pp. 1–4

  22. Nasir T, Asmaela M, Zeeshana Q, Solyalib D (2020) Applications of machine learning to friction stir welding process optimization. Jurnal Kejuruteraan 32(1):171–186

    Google Scholar 

  23. Nasteski V (2017) An overview of the supervised machine learning methods. Horizons b 4:51–62

    Article  Google Scholar 

  24. Osisanwo FY, Akinsola JET, Awodele O, Hinmikaiye JO, Olakanmi O, Akinjobi J (2017) Supervised machine learning algorithms: classification and comparison. International Journal of Computer Trends and Technology (IJCTT) 48(3):128–138

    Article  Google Scholar 

  25. Rokach L, Maimon O (2005) Top-down induction of decision trees classifiers-a survey. IEEE Trans Syst Man Cybern Part C Appl Rev 35(4):476–487

  26. Singh A, Thakur N, Sharma A (2016) A review of supervised machine learning algorithms. In Proceedings of the 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom) pp. 1310–1315

  27. Taleb M, Chaib R (2016) Vibration analysis of rotating machines for optimal preventive maintenance. Min Sci 23:191–202

    Google Scholar 

  28. Thomas M (2012) Fiabilité, maintenance prédictive et vibration des machines. PUQ

  29. Wuest T, Weimer D, Irgens C, Thoben KD (2016) Machine learning in manufacturing: advantages, challenges, and applications. Prod Manuf Res 4(1):23–45

    Google Scholar 

  30. Zhou X, Xi L, Lee J (2007) Reliability-centred predictive maintenance scheduling for a continuously monitored system subject to degradation. Reliab Eng Syst Saf 92(4):530–534

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Zemmouchi-Ghomari.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouadah, A., Zemmouchi-Ghomari, L. & Salhi, N. Selecting an appropriate supervised machine learning algorithm for predictive maintenance. Int J Adv Manuf Technol 119, 4277–4301 (2022). https://doi.org/10.1007/s00170-021-08551-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-08551-9

Keywords

Navigation