Skip to main content
Log in

Optimization of the milling process for aluminum honeycomb structures

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The milling of aluminum honeycomb structures represents today an important scientific and technical research topic for many industrial applications: aerospace, aeronautic, automotive, and naval. The difficulties encountered when milling this type of materials are linked to the small thickness of the walls constituting the honeycomb cells and the ductility of the material structure. The milling of cellular composite structures requires specific and rigorous tools. In the present work, a 3D numerical modeling of the milling process of aluminum honeycombs has been developed using Abaqus Explicit software. The effect of milling parameters, such as the spindle speed, the tilt angle, and the depth of cut, has been particularly investigated in terms of cutting forces, surface integrity, and chip morphology. To properly analyze and optimize the cutting process, experimental validation was done through milling tests with different cutting conditions. The comparison between numerical simulations and experimental tests shows that the three-dimensional model correctly reproduces the milling of this type of structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Cognard P (2003) Collage des composites. Ed. Techniques Ingénieur

  2. Reyne M (1998) Les composites dans les sports et les loisirs. Ed. Techniques Ingénieur

  3. Dessarthe A (1992) Assemblage des matériaux composites, structures sandwichs et matiéres plastiques

  4. Jansons J, Kulakov V, Aniskevich A, Structural LA (2012) Composites− from aerospace to civil engineering applications. Innovations and Technologies News 4(17):3–12

    Google Scholar 

  5. Dessarthe A (1999) Usinage des composites à matrice polymère. Tech. l’Ingénieur

  6. Geng D, Zhang D, Xu Y, He F, Liu D, Duan Z (2015) Rotary ultrasonic elliptical machining for side milling of CFRP: tool performance and surface integrity. Ultrasonics 59:128–137

    Article  Google Scholar 

  7. Teti R (2002) Machining of composite materials. CIRP Ann 51(2):611–634

    Article  Google Scholar 

  8. Zhao H, Elnasri I, Abdennadher S (2005) An experimental study on the behaviour under impact loading of metallic cellular materials. Int J Mech Sci 47(4–5):757–774

    Article  Google Scholar 

  9. Chandler HE (1989) Machining of metal-matrix composites and honeycomb structures. Asm handbook 16:893–901

    Google Scholar 

  10. Qiu K, Ming W, Shen L, An Q, Chen M (2017) Study on the cutting force in machining of aluminum honeycomb core material. Compos Struct 164:58–67

    Article  Google Scholar 

  11. Gao Y, Ko JH, Lee HP (2018) 3D coupled Eulerian-Lagrangian finite element analysis of end milling. Int J Adv Manuf Technol 98(1):849–857

    Article  Google Scholar 

  12. Daoud M, Chatelain JF, Bouzid A (2015) Effect of rake angle on Johnson-Cook material constants and their impact on cutting process parameters of Al2024-T3 alloy machining simulation. Int J Adv Manuf Technol 81(9):1987–1997

    Article  Google Scholar 

  13. Kang P, Youn SK, Lim JH (2013) Modification of the critical projectile diameter of honeycomb sandwich panel considering the channeling effect in hypervelocity impact. Aerosp Sci Technol 29(1):413–425

    Article  Google Scholar 

  14. Huang W, Zhang W, Li D, Ye N, Xie W, Ren P (2016) Dynamic failure of honeycomb-core sandwich structures subjected to underwater impulsive loads. European Journal of Mechanics-A/Solids 60:39–51

    Article  Google Scholar 

  15. Aydin M, Köklü U (2017) Identification and modeling of cutting forces in ball-end milling based on two different finite element models with arbitrary Lagrangian Eulerian technique. Int J Adv Manuf Technol 92:1465–1480

    Article  Google Scholar 

  16. Aydin M, Köklü U (2020) Analysis of flat-end milling forces considering chip formation process in high-speed cutting of Ti6Al4V titanium alloy. Simul Model Pract Theory 100:102–139

    Article  Google Scholar 

  17. Régnier T, Fromentin G, Outeiro J, Marcon B, d'Acunto A, Crolet A (2016) Etude de la formation des bavures en coupe orthogonale à l’outil carbure dans un alliage d’Aluminium – Silicium

  18. Boussaha A (2007) Etude expérimentale des paramètres influants le serti des boites métalliques: Cas de l'unité BENPACK–Batna. Dissertation, Université de Batna 2

  19. Tiabi A (2010) Formation des bavures d'usinage et finition de pièces. Dissertation, École de technologie supérieure

  20. Niknam SA (2013) Burrs understanding, modeling and optimization during slot milling of aluminium alloys Dissertation, École de technologie supérieure

  21. Crupi V, Epasto G, Guglielmino E, Mozafari H, Najafian S (2014) Computed tomography-based reconstruction and finite element modelling of honeycomb sandwiches under low-velocity impacts. J Sandw Struct Mater 16(4):377–397

    Article  Google Scholar 

  22. Johnson GR, Cook WH (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21(1):31–48

    Article  Google Scholar 

  23. Atlati S (2012) Développement d’une nouvelle approche hybride pour la modélisation des échanges thermiques à l’interface outil copeau: application à l’usinage de l’alliage d’aluminium aéronautique AA 2024-T351. Dissertation, Université de Lorraine, France

  24. Jenarthanan MP, Jeyapaul R (2013) Optimisation of machining parameters on milling of GFRP composites by desirability function analysis using Taguchi method. Int J Eng Sci Technol 5(4):22–36

    Article  Google Scholar 

  25. Zarrouk T, Salhi JE, Atlati S, Nouari M, Salhi M, Salhi N (2021) Modeling and numerical simulation of the chip formation process when machining Nomex. Environ Sci Pollut Res 1–8

  26. Jaafar M, Atlati S, Makich H, Julliere B (2017) A 3D FE modeling of machining process of Nomex® honeycomb core: influence of the cell structure behaviour and specific tool geometry. Procedia Cirp 58:505–510

    Article  Google Scholar 

  27. Jaafar M (2018) Étude expérimentale et simulation numérique de l’usinage des matériaux en nids d’abeilles : application au fraisage des structures Nomex® et Aluminium. Dissertation, Université de Lorraine, France

  28. Zarrouk T, Salhi JE, Atlati S, Nouari M, Salhi M, Salhi N (2021) Study on the behavior law when milling the material of the Nomex honeycomb core. Materials Today: Proceedings 45(8):7477–7485

    Google Scholar 

  29. Sahare SB, Untawale SP, Chaudhari SS, Shrivastav RL, Kamble PD (2017) Experimental investigation of end milling operation on Al2024. Mater Today Proc 4(2):1357–1365

    Article  Google Scholar 

  30. Moshat S, Datta S, Bandyopadhyay A, Pal P (2010) Optimization of CNC end milling process parameters using PCA-based Taguchi method. Int J Eng Sci Technol 2(1):95–102

    Article  Google Scholar 

  31. Wang DH, Ramulu M, Arola D (1995) Orthogonal cutting mechanisms of graphite/epoxy composite. Int J Mach Tools Manuf 35(12):1623–1638

    Article  Google Scholar 

  32. Zarrouk T, Salhi JE, Nouari M, Salhi M, Atlati S, Salhi N, Makich H (2021) Analysis of friction and cutting parameters when milling honeycomb composite structures. Adv Mech Eng 13(7):16878140211034840

    Article  Google Scholar 

  33. Turki Y, Habak M, Velasco R, Vantomme P, Aboura Z (2011) Evaluation expérimentale du comportement d'un composite carbone/époxy en usinage. In Congrès français de mécanique. AFM, Maison de la Mécanique, 39/41 rue Louis Blanc, 92400 Courbevoie, France (FR)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarik Zarrouk.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarrouk, T., Nouari, M., Salhi, JE. et al. Optimization of the milling process for aluminum honeycomb structures. Int J Adv Manuf Technol 119, 4733–4744 (2022). https://doi.org/10.1007/s00170-021-08495-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-08495-0

Keywords

Navigation