Skip to main content
Log in

Investigative study on the AC and DC breakdown voltage of nanofluid from Jatropha–Neem oil mixture for use in oil-filled power equipment

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper investigated the feasibility of developing alternative insulating nanofluid from a mixture of Jatropha and Neem oils into which compositions of 0.2 to 1.0 wt% of titanium oxide nanoparticles were dispersed. FTIR, SEM–EDX and XRD analyses of titanium oxide nanoparticles were carried out. The DC and AC breakdown voltages were measured and analysed using Weibull statistical tool. In the Weibull statistical analysis, it was observed that the characteristic breakdown field strength of PJO is higher relative to PNO and has slight differences compared to the PJNO sample. With the dispersion of TiO2 nanoparticles, the characteristic breakdown strength improved as compared with the base oil. Furthermore, the developed Jatropha–Neem mixture nanofluid recorded characteristic breakdown field strength that is much higher compared to that of the mineral oil sample. The mixture of Jatropha and Neem oil nanofluid sample possessed the highest characteristic breakdown strength among prepared nanofluids which indicates that the characteristic breakdown strength of the oil samples has been improved considerably with the dispersion of TiO2 nanoparticles. The results have shown the viability of Jatropha–Neem nanofluid as insulating oil for use in oil-filled power equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wanikhalid S, Ankush R, Mir Irfan U (2018) Friction and wear characteristics of vegetable oils using nanoparticles for sustainable lubrication

  2. Mehta DM, Kundu PA, Chowdhury A, Lakhaiani VK, Jhala AS (2016) A review on critical evaluation of natural ester vis-à-vis mineral oil insulating liquid for use in transformers: part 1. IEEE Trans Dielectr Electr Insul 23:873–880

    Article  Google Scholar 

  3. Issouf F (2013) 50 years in the development of insulating liquids. Article in IEEE Electr. Insul. Mag 9(5):13–16

    Google Scholar 

  4. Rouabeh J, M’barki L, Hammami A, Jallouli I, Driss A (2019) Studies of different types of insulating oils and their mixtures as an alternatives to mineral oil for cooling power transformers. Heliyon 5(3):e01159. https://doi.org/10.1016/j.heliyon.2019

    Article  Google Scholar 

  5. Mohsen Z (2011) Measurement of ion mobility in dielectric liquids, master of science thesis in electric power engineering, department of materials and manufacturing technology division of high voltage engineering. Chalmers University of Technology Goteborg, Sweden

    Google Scholar 

  6. Abdelmalik AA (2015) Analysis of thermally aged insulation paper in a natural-ester-based dielectric fluid. IEEE Trans Dielectric Electr Insult 22:2408–2414

    Article  Google Scholar 

  7. Suwarno A, Rajab A, Salaeman A, Sudirhan S (2018) Comparison of dielectric properties of palm oil with mineral and synthetic type insulating liquid under temperature variation. ITB J. Eng. Sci 43:191–208

    Google Scholar 

  8. Oparanti SO, Khaleed AA, Abdelmalik AA, Chalashkanov NM (2020) Dielectric characterization of palm kernel oil ester-based insulating nanofluid. IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP) 2020:211–214. https://doi.org/10.1109/CEIDP49254.2020.9437477

    Article  Google Scholar 

  9. Mansour DE, Atiya EG, Khattab RM, Azmy AM (2012) Effect of titanium nanoparticles on the transformer oil-based Nanofluids. Annual Report Conference on Electrical Insulation and Dielectric Phenomena, pp 295–298

  10. Sanchez-Dominguez M, Rodriguez-Abreu C (2016) Nano colloids: a meeting point for scientists and technologists

  11. Sayanta M, Paria S (2013) Preparation and stability of nanofluids-a review. J Mech Civ Eng 9(2):63–69

    Google Scholar 

  12. Oparanti SO, Khaleed AA, Abdelmalik AA (2021) Nanofluid from palm kernel oil for high voltage insulation. Mater Chem Phys 259:123–961

    Article  Google Scholar 

  13. Oparanti SO, Khaleed AA, Abdelmalik AA (2021) AC breakdown analysis of synthesized nanofluids for oil-filled transformer insulation. Int J Adv Manuf Technol 117:1395–1403. https://doi.org/10.1007/s00170-021-07631-0

    Article  Google Scholar 

  14. Makmud MZH, Illias HA, Chee CY, Sarjadi MS (2018) Influence of conductive and semi-conductive nanoparticles on the dielectric response of natural ester-based nanofluid Insulation. Energies 11(2):333

    Article  Google Scholar 

  15. Given MJ, Wilson MP, McGlome P, Timoshkin IV, Wang T, MacGregor SJ (2011) The influence of magnetite nanoparticles on the behaviour of insulating oils for pulse power applications. IEEE, Conf Electr Insul Dielectr Phenomena, pp 40–43

  16. Khedkar RS, Shrivastava N, Sonawares S, Wasewar K, L. (2016) Experimental investigation and theoretical determination of thermal conduction and viscosity of titanium oxide ethylene glycol nanofluid. Int Commun Heat Mass Transfer 73:54–61

    Article  Google Scholar 

  17. Henry BH, Abderranhmane B, Rudy S, Setijo B (2017) Statistical analysis of AC and DC breakdown voltage of JMEO (jatropha methyl ester oil), mineral oil and their mixtures. 19th IEEE International Conference on Dielectric Liquids(ICDL), UK

Download references

Funding

This work was supported by Nigeria’s Tertiary Education Trust Fund (TETFund) National Research Fund (NRF) Research Grant 2019. /DR&D/CE/NRF/UNI/ZARIA/STI/55/VOL.1

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samson Okikiola Oparanti.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tambuwal, F.R., Oparanti, S.O., Abdulkadir, I. et al. Investigative study on the AC and DC breakdown voltage of nanofluid from Jatropha–Neem oil mixture for use in oil-filled power equipment. Int J Adv Manuf Technol 119, 4375–4383 (2022). https://doi.org/10.1007/s00170-021-08447-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-08447-8

Keywords

Navigation