Skip to main content
Log in

A systematic review of the effects of deposition parameters on the properties of Inconel thin films

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

A Correction to this article was published on 24 January 2022

This article has been updated

Abstract

Inconel thin coatings exhibit outstanding oxidation and corrosion-resistant appropriate for application in severe environments that are prone to heat and pressure. They can form a stable and passivating oxide layer, which protects metal surfaces from been attacked. Inconel also retains their strength over a wide range of temperatures, and this makes them a material of choice for high-temperature applications ahead of steel and aluminum, which yield to creep more easily because creation of vacancies in their crystals are easily thermally provoked. Inconel thin coatings are majorly accomplished on substrates through chemical or physical processes at different deposition parameters and conditions. This study is centered more on Inconel thin coatings prepared by physical deposition techniques since published literature has already established that they have more exceptional characteristics compared to those of the chemical deposition techniques. The review, therefore, examines the characteristics of Inconel thin coatings and their intricate relations with process conditions and parameters such as rate of deposition, deposition time, the temperature of substrates, power, the temperature of deposition, the surface finish of substrates, and deposition pressure. The characteristics of the coatings are also affected by the properties of subtracts and subsequent treatment employed on them. Hence, the importance of optimizing the coating techniques was highlighted in this review, and research gaps in published works were further uncovered. The work can be an essential basis for selecting vital processing parameters in the physical deposition of Inconel thin coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Change history

References

  1. Pontarollo A, Vezzù S, Trentin A, Rech S, Guidolin M, Cafissi A, Peretti C, Molinas B (2011) Characterization of Inconel 625 coatings deposited by cold spray. In Proc of International Thermal Spray Conference & Exposition Hamburg DVS 276 

  2. Akca E, Gursel A (2015) A review on superalloys and IN718 nickel-based inconel superalloy. Periodicals of engineering and natural sciences 3(1):15–25

    Google Scholar 

  3. Zhen J, Li F, Zhu S, Ma J, Qiao Z, Liu W, Yang J (2014) Friction and wear behavior of nickel-alloy-based high temperature self-lubricating composites against Si3N4 and Inconel 718. Tribol Int 75:1–9

    Google Scholar 

  4. Li F, Cheng J, Qiao Z, Ma J, Zhu S, Fu L, Liu W (2013) A nickel-alloy-based high-temperature self-lubricating composite with simultaneously superior lubricity and high strength. Tribol Lett 49(3):573–577

    Google Scholar 

  5. Lambarri J, Leunda J, Navas VG, Soriano C, Sanz C (2013) Microstructural and tensile characterization of Inconel 718 laser coatings for aeronautic components. Opt Lasers Eng 51(7):813–821

    Google Scholar 

  6. Kursuncu B, Caliskan H, Guven SY, Panjan P (2018) Improvement of cutting performance of carbide cutting tools in milling of the Inconel 718 superalloy using multilayer nanocomposite hard coating and cryogenic heat treatment. Int J Adv Manuf Technol 97(1–4):467–479

    Google Scholar 

  7. Razak NH, Chen ZW, Pasang T (2016) Progression of tool deterioration and related cutting force during milling of 718Plus superalloy using cemented tungsten carbide tools. Int J Adv Manuf Technol 86(9–12):3203–3216

    Google Scholar 

  8. Devillez A, Schneider F, Dominiak S, Dudzinski D, Larrouquere D (2007) Cutting forces and wear in dry machining of Inconel 718 with coated carbide tools. Wear 262(7–8):931–942

    Google Scholar 

  9. Lungu MV, Sobetkii A, Sobetkii AA, Patroi D, Prioteasa P, Ion I, Chifiriuc MC (2018) Functional properties improvement of Ag-ZnO thin films using Inconel 600 interlayer produced by electron beam evaporation technique. Thin Solid Films 667:76–87

    Google Scholar 

  10. Poza P, Múnez CJ, Garrido-Maneiro MA, Vezzù S, Rech S, Trentin A (2014) Mechanical properties of Inconel 625 cold-sprayed coatings after laser remelting. Depth sensing indentation analysis. Surf Coat Technol 243:51–57

    Google Scholar 

  11. Arunachalam RM, Mannan MA, Spowage AC (2004) Surface integrity when machining age hardened Inconel 718 with coated carbide cutting tools. Int J Mach Tools Manuf 44(14):1481–1491

    Google Scholar 

  12. Feng K, Chen Y, Deng P, Li Y, Zhao H, Lu F, Li Z (2017) Improved high-temperature hardness and wear resistance of Inconel 625 coatings fabricated by laser cladding. J Mater Process Technol 243:82–91

    Google Scholar 

  13. Deng P, Yao C, Feng K, Huang X, Li Z, Li Y, Zhao H (2018) Enhanced wear resistance of laser cladded graphene nanoplatelets reinforced Inconel 625 superalloy composite coating. Surf Coat Technol 335:334–344

    Google Scholar 

  14. Al-Fadhli HY, Stokes J, Hashmi MSJ, Yilbas BS (2006) The erosion–corrosion behaviour of high velocity oxy-fuel (HVOF) thermally sprayed inconel-625 coatings on different metallic surfaces. Surf Coat Technol 200(20–21):5782–5788

    Google Scholar 

  15. Sadeghimeresht E, Markocsan N, Nylén P (2016) A comparative study on Ni-based coatings prepared by HVAF, HVOF, and APS methods for corrosion protection applications. J Therm Spray Technol 25(8):1604–1616

    Google Scholar 

  16. Napłoszek-Bilnik I, Budniok A, Łosiewicz B, Pająk L, Łągiewka E (2005) Electrodeposition of composite Ni-based coatings with the addition of Ti or/and Al particles. Thin Solid Films 474(1–2):146–153

    Google Scholar 

  17. Chaudhuri A, Raghupathy Y, Srinivasan D, Suwas S, Srivastava C (2017) Microstructural evolution of cold-sprayed Inconel 625 superalloy coatings on low alloy steel substrate. Acta Mater 129:11–25

    Google Scholar 

  18. Bagherifard S, Roscioli G, Zuccoli MV, Hadi M, D’Elia G, Demir AG, Guagliano M (2017) Cold spray deposition of freestanding Inconel samples and comparative analysis with selective laser melting. J Therm Spray Technol 26(7):1517–1526

    Google Scholar 

  19. Cavaliere P, Silvello A, Cinca N, Canales H, Dosta S, Cano IG, Guilemany JM (2017) Microstructural and fatigue behavior of cold sprayed Ni-based superalloys coatings. Surf Coat Technol 324:390–402

    Google Scholar 

  20. Park J, Ogletree DF, Salmeron M, Jenks CJ, Thiel PA (2004) Friction and adhesion properties of clean and oxidized Al-Ni-Co decagonal quasicrystals: a UHV atomic force microscopy/scanning tunneling microscopy study. Tribol Lett 17(3):629–636

    Google Scholar 

  21. Barshilia HC, Rajam KS (2002) Characterization of Cu/Ni multilayer coatings by nanoindentation and atomic force microscopy. Surf Coat Technol 155(2–3):195–202

    Google Scholar 

  22. Rozmus-Gornikowska M, Kusinski J, Cieniek Ł (2019) Characterization of Inconel 625 surface layer modified by laser shock processing. Int J Mater Res 110(1):82–85

    Google Scholar 

  23. Oladijo OP, Luzin V, Maledi NB, Setswalo K, Ntsoane TP, Abe H (2020) Residual stress and wear resistance of HVOF Inconel 625 coating on SS304 steel substrate. J Therm Spray Technol 29(6):1382–1395

    Google Scholar 

  24. Singh H, Sidhu TS, Kalsi SS (2015) Microstructure study of cold sprayed 50% Ni–50% Cr coating on Inconel-601. Surf Eng 31(11):825–831

    Google Scholar 

  25. Sun W, Bhowmik A, Tan AWY, Li R, Xue F, Marinescu I, Liu E (2019) Improving microstructural and mechanical characteristics of cold-sprayed Inconel 718 deposits via local induction heat treatment. J Alloy Compd 797:1268–1279

    Google Scholar 

  26. Dinda GP, Dasgupta AK, Mazumder J (2009) Laser aided direct metal deposition of Inconel 625 superalloy: microstructural evolution and thermal stability. Mater Sci Eng, A 509(1–2):98–104

    Google Scholar 

  27. Chung KH, Rodriguez R, Lavernia EJ, Lee J (2002) Grain growth behavior of cryomilled Inconel 625 powder during isothermal heat treatment. Metall and Mater Trans A 33(1):125–134

    Google Scholar 

  28. Hidouci A, Pelletier JM, Ducoin F, Dezert D, El Guerjouma R (2000) Microstructural and mechanical characteristics of laser coatings. Surf Coat Technol 123(1):17–23

    Google Scholar 

  29. Oladijo OP, Luzin V, Ntsoane TP (2019) Thermally sprayed Inconel 625 coating on 304 stainless steel: a neutron diffraction stress analysis. Procedia Manufacturing 35:1234–1239

    Google Scholar 

  30. Al Harbi N, Al Hamed A, Karthikeyan CP, Padmanabhan R, Yilbas BS, Hashmi MSJ, Stokes J. Laser treatment of HVOF thermal sprayed nanostructured WC-12Co mixed with Inconel-625 coatings for wear applications 1–9

  31. Pina J, Dias A, Lebrun JL (2003) Study by X-ray diffraction and mechanical analysis of the residual stress generation during thermal spraying. Mater Sci Eng, A 347(1–2):21–31

    Google Scholar 

  32. Feng J, Yuan G, Mao L, Leão JB, Bedell R, Ramic K, Liu L (2020) Probing layered structure of Inconel 625 coatings prepared by magnetron sputtering. Surf Coat Technol. https://doi.org/10.1016/j.surfcoat.2020.126545

    Article  Google Scholar 

  33. Rozmus-Górnikowska M, Blicharski M (2017) TEM microstructure and chemical composition of transition zone between steel tube and an Inconel 625 weld overlay coating produced by CMT method. Arch Metall Mater 62(2):787–793

    Google Scholar 

  34. Sun W, Tan AWY, Bhowmik A, Marinescu I, Song X, Zhai W, Liu E (2018) Deposition characteristics of cold sprayed Inconel 718 particles on Inconel 718 substrates with different surface conditions. Mater Sci Eng A 720:75–84

    Google Scholar 

  35. Sharma SP, Dwivedi DK, Jain PK (2009) Effect of La2O3 addition on the microstructure, hardness and abrasive wear behavior of flame sprayed Ni based coatings. Wear 267(5–8):853–859

    Google Scholar 

  36. Boudi AA, Hashmi MSJ, Yilbas BS (2004) HVOF coating of Inconel 625 onto stainless and carbon steel surfaces: corrosion and bond testing. J Mater Process Technol 155:2051–2055

    Google Scholar 

  37. Tuominen J, Vuoristo P, Mantyla T, Latokartano J, Vihinen J, Andersson PH (2003) Microstructure and corrosion behavior of high power diode laser deposited Inconel 625 coatings. J Laser Appl 15(1):55–61

    Google Scholar 

  38. Ramesh CS, Devaraj DS, Keshavamurthy R, Sridhar BR (2011) Slurry erosive wear behaviour of thermally sprayed Inconel-718 coatings by APS process. Wear 271(9–10):1365–1371

    Google Scholar 

  39. Park IC, Kim SJ (2017) Corrosion behavior in seawater of arc thermal sprayed Inconel 625 coatings with sealing treatment. Surf Coat Technol 325:729–737

    Google Scholar 

  40. Cavaliere P, Perrone A, Silvello A (2018) Fatigue behaviour of Inconel 625 cold spray coatings. Surf Eng 34(5):380–391

    Google Scholar 

  41. Vaben R, Fiebig J, Kalfhaus T, Gibmeier J, Kostka A, Schrufer S (2020) Correlation of microstructure and properties of cold gas sprayed Inconel 718 coatings. J Therm Spray Technol 29:1455–1465

    Google Scholar 

  42. Grujicic M, Saylor JR, Beasley DE, Derosset WS, Helfritch D (2003) Computational analysis of the interfacial bonding between feed-powder particles and the substrate in the cold-gas dynamic-spray process. Appl Surf Sci 219(3–4):211–227

    Google Scholar 

  43. Zhao WM, Wang Y, Liu C, Dong LX, Yu HH, Ai H (2010) Erosion–corrosion of thermally sprayed coatings in simulated splash zone. Surf Coat Technol 205(7):2267–2272

    Google Scholar 

  44. Xu X, Mi G, Xiong L, Jiang P, Shao X, Wang C (2018) Morphologies, microstructures and properties of TiC particle reinforced Inconel 625 coatings obtained by laser cladding with wire. J Alloy Compd 740:16–27

    Google Scholar 

  45. Zhang Y, Li Z, Nie P, Wu Y (2013) Effect of cooling rate on the microstructure of laser-remelted Inconel 718 coating. Metall and Mater Trans A 44(12):5513–5521

    Google Scholar 

  46. Obrtlik K, Pospisilova S, Julis M, Podrabsky T, Polak J (2012) Fatigue behavior of coated and uncoated cast Inconel 713LC at 800 °C. Int J Fatigue 41:101–106

    Google Scholar 

  47. Abioye TE, Folkes J, Clare AT (2013) A parametric study of Inconel 625 wire laser deposition. J Mater Process Technol 213(12):2145–2151

    Google Scholar 

  48. Boudi AA, Hashmi MSJ, Yilbas BS (2006) ESEM evaluation of Inconel-625 thermal spray coating (HVOF) onto stainless steel and carbon steel post brine exposure after tensile tests. J Mater Process Technol 173(1):44–52

    Google Scholar 

  49. Mahmood K, Stevens N, Pinkerton AJ (2012) Laser surface modification using Inconel 617 machining swarf as coating material. J Mater Process Technol 212(6):1271–1280

    Google Scholar 

  50. Luo XT, Yao ML, Ma N, Takahashi M, Li CJ (2018) Deposition behavior, microstructure and mechanical properties of an in-situ micro-forging assisted cold spray enabled additively manufactured Inconel 718 alloy. Mater Des 155:384–395

    Google Scholar 

  51. Ma W, Xie Y, Chen C, Fukanuma H, Wang J, Ren Z, Huang R (2019) Microstructural and mechanical properties of high-performance Inconel 718 alloy by cold spraying. J Alloy Compd 792:456–467

    Google Scholar 

  52. Al-Fadhli HY, Stokes J, Hashmi MSJ, Yilbas BS (2006) HVOF coating of welded surfaces: fatigue and corrosion behaviour of stainless steel coated with Inconel-625 alloy. Surf Coat Technol 200(16–17):4904–4908

    Google Scholar 

  53. Verdi D, Munez CJ, Garrido MA, Poza P (2017) Process parameter selection for Inconel 625-Cr3C2 laser cladded coatings. Int J Adv Manuf Technol 92(5–8):3033–3042

    Google Scholar 

  54. Pérez-Andrade LI, Gärtner F, Villa-Vidaller M, Klassen T, Muñoz-Saldaña J, Alvarado-Orozco JM (2019) Optimization of Inconel 718 thick deposits by cold spray processing and annealing. Surf Coat Technol 378:124997

  55. Ghadami F, Aghdam ASR (2019) Improvement of high velocity oxy-fuel spray coatings by thermal post-treatments: a critical review. Thin Solid Films 678:42–52

    Google Scholar 

  56. Rajani HZ, Mousavi SA, Sani FM (2013) Comparison of corrosion behavior between fusion cladded and explosive cladded Inconel 625/plain carbon steel bimetal plates. Mater Des 43:467–474

    Google Scholar 

  57. Xu X, Mi G, Chen L, Xiong L, Jiang P, Shao X, Wang C (2017) Research on microstructures and properties of Inconel 625 coatings obtained by laser cladding with wire. J Alloy Compd 715:362–373

    Google Scholar 

  58. Zhong C, Gasser A, Kittel J, Wissenbach K, Poprawe R (2016) Improvement of material performance of Inconel 718 formed by high deposition-rate laser metal deposition. Mater Des 98:128–134

    Google Scholar 

  59. Olakanmi EO, Malikongwa K, Nyadongo ST, Hoosain S, Pityana SL (2020) Consolidation mechanism, microstructural evolution and corrosion resistance of Inconel 625 coatings. Surf Eng 1–14

  60. Abioye TE, McCartney DG, Clare AT (2015) Laser cladding of Inconel 625 wire for corrosion protection. J Mater Process Technol 217:232–240

    Google Scholar 

  61. Lyphout C, Nylen P, Manescu A, Pirling T (2008) Residual stresses distribution through thick HVOF sprayed Inconel 718 coatings. J Therm Spray Technol 17(5–6):915–923

    Google Scholar 

  62. Lesyk DA, Martinez S, Mordyuk BN, Dzhemelinskyi VV, Lamikiz А, Prokopenko GI (2020) Post-processing of the Inconel 718 alloy parts fabricated by selective laser melting: effects of mechanical surface treatments on surface topography, porosity, hardness and residual stress. Surf Coat Technol 381. https://doi.org/10.1016/j.surfcoat.2019.125136

  63. Buchmann M, Gadow R, Tabellion J (2000) Experimental and numerical residual stress analysis of layer coated composites. Mater Sci Eng, A 288(2):154–159

    Google Scholar 

  64. Sampath S, Jiang XY, Matejicek J, Prchlik L, Kulkarni A, Vaidya A (2004) Role of thermal spray processing method on the microstructure, residual stress and properties of coatings: an integrated study for Ni–5 wt.% Al bond coats. Mater Sci Eng A 364(1–2):216–231

  65. Matejicek J, Sampath S (2001) Intrinsic residual stresses in single splats produced by thermal spray processes. Acta Mater 49(11):1993–1999

    Google Scholar 

  66. Hjornhede A, Nylund A (2004) Adhesion testing of thermally sprayed and laser deposited coatings. Surf Coat Technol 184(2–3):208–218

    Google Scholar 

  67. Murariu AC, Perianu IA (2019) Influence of HVOF deposition thickness on adhesion strength. Advanced Technologies and Materials 44(1):33–40

    Google Scholar 

  68. Lyphout C, Nylen P, Ostergren LG (2012) Adhesion strength of HVOF sprayed IN718 coatings. J Therm Spray Technol 21(1):86–95

    Google Scholar 

  69. Marzbanrad B, Toyserkani E, Jahed H (2021) Customization of residual stress induced in cold spray printing. J Mater Process Technol 289. https://doi.org/10.1016/j.jmatprotec.2020.116928

  70. Singh R, Schruefer S, Wilson S, Gibmeier J, Vassen R (2018) Influence of coating thickness on residual stress and adhesion-strength of cold-sprayed Inconel 718 coatings. Surf Coat Technol 350:64–73

    Google Scholar 

  71. Chen L, Yang GJ, Li CX (2017) Formation of lamellar pores for splats via interfacial or sub-interfacial delamination at chemically bonded region. J Therm Spray Technol 26(3):315–326

    Google Scholar 

  72. Chen L, Gao LL, Yang GJ (2018) Imaging slit pores under delaminated splats by white light interference. J Therm Spray Technol 27(3):319–335

    Google Scholar 

  73. Choudhuri A, Love N (2016) Design optimization of liquid fueled high velocity oxy-fuel thermal spraying technique for durable coating for fossil power systems (No. DOE-UTEP-FE0008548). Univ. of Texas, El Paso, TX (United States). https://doi.org/10.2172/1356809

  74. Azarmi F, Coyle TW, Mostaghimi J (2008) Optimization of atmospheric plasma spray process parameters using a design of experiment for alloy 625 coatings. J Therm Spray Technol 17(1):144–155

    Google Scholar 

  75. Liu Z, Cabrero J, Niang S, Al-Taha ZY (2007) Improving corrosion and wear performance of HVOF-sprayed Inconel 625 and WC-Inconel 625 coatings by high power diode laser treatments. Surf Coat Technol 201(16–17):7149–7158

    Google Scholar 

  76. Ahmed N, Bakare MS, McCartney DG, Voisey KT (2010) The effects of microstructural features on the performance gap in corrosion resistance between bulk and HVOF sprayed Inconel 625. Surf Coat Technol 204(14):2294–2301

    Google Scholar 

  77. Tuominen J, Honkanen M, Hovikorpi J, Vihinen J, Vuoristo P, Maentylae T (2003) Corrosion-resistant nickel superalloy coatings laser clad with a 6-kW high-power diode laser (HPDL). In First International Symposium on High-Power Laser Macroprocessing. International Society for Optics and Photonics 4831:59–64

    Google Scholar 

  78. Kumar M, Das M, Majumdar JD, Manna (2020) Development of graded composition and microstructure on Inconel 718 by laser surface alloying with Si, Al and ZrB2 for improvement in high temperature oxidation resistance. Surf Coat Technol 402. https://doi.org/10.1016/j.surfcoat.2020.126345

  79. Sidhu TS, Agrawal RD, Prakash S (2005) Hot corrosion of some superalloys and role of high-velocity oxy-fuel spray coatings—a review. Surf Coat Technol 198(1–3):441–446

    Google Scholar 

  80. Sidhu TS, Prakash S, Agrawal RD (2005) Studies on the properties of high-velocity oxy-fuel thermal spray coatings for higher temperature applications. Mater Sci 41(6):805–823

    Google Scholar 

  81. Gan JA, Berndt CC (2015) Nanocomposite coatings: thermal spray processing, microstructure and performance. Int Mater Rev 60(4):195–244

    Google Scholar 

  82. Tellkamp VL, Lau ML, Fabel A, Lavernia EJ (1997) Thermal spraying of nanocrystalline inconel 718. Nanostruct Mater 9(1–8):489–492

    Google Scholar 

  83. Fesharaki MN, Shoja-Razavi R, Mansouri HA, Jamali H (2019) Evaluation of the hot corrosion behavior of Inconel 625 coatings on the Inconel 738 substrate by laser and TIG cladding techniques. Opt Laser Technol 111:744–753

    Google Scholar 

  84. Hao E, An Y, Zhao X, Zhou H, Chen J (2018) NiCoCrAlYTa coatings on nickel-base superalloy substrate: deposition by high velocity oxy-fuel spraying as well as investigation of mechanical properties and wear resistance in relation to heat-treatment duration. Appl Surf Sci 462:194–206

    Google Scholar 

  85. Bhargava P, Paul CP, Premsingh CH, Mishra SK, Kumar A, Nagpure DC, Kukreja LM (2013) Tandem rapid manufacturing of Inconel-625 using laser assisted and plasma transferred arc depositions. Advances in Manufacturing 1(4):305–313

    Google Scholar 

  86. Chandra S, Fauchais P (2009) Formation of solid splats during thermal spray deposition. J Therm Spray Technol 18(2):148–180

    Google Scholar 

  87. Sun W, Bhowmik A, Tan AWY, Xue F, Marinescu I, Li F, Liu E (2019) Strategy of incorporating Ni-based braze alloy in cold sprayed Inconel 718 coating. Surf Coat Technol 358:1006–1012

    Google Scholar 

  88. Azarmi F, Moradian A, Mostaghimi J, Coyle TW, Pershin L (2007) Microstructure characterization and modeling of splat formation during air plasma spraying for Inconel 625 superalloy. Mater Sci Forum 539–543:1218–1223

    Google Scholar 

  89. Arif AFM, Yilbas BS (2006) Three-point bend testing of HVOF Inconel 625 coating: FEM simulation and experimental investigation. Surf Coat Technol 201(3–4):1873–1879

    Google Scholar 

  90. Walker M (2018) Microstructure and bonding mechanisms in cold spray coatings. Mater Sci Technol 34(17):2057–2077

    Google Scholar 

  91. Felix LM, Kwan CC, Zhou NY (2019) The effect of pulse energy on the defects and microstructure of electro-spark-deposited Inconel 718. Metall and Mater Trans A 50(9):4223–4231

    Google Scholar 

  92. Wong W, Irissou E, Vo P, Sone M, Bernier F, Legoux JG, Yue S (2013) Cold spray forming of Inconel 718. J Therm Spray Technol 22(2–3):413–421

    Google Scholar 

  93. Rokni MR, Nutt SR, Widener CA, Champagne VK, Hrabe RH (2017) Review of relationship between particle deformation, coating microstructure, and properties in high-pressure cold spray. J Therm Spray Technol 26(6):1308–1355

    Google Scholar 

  94. Srinivasan D, Chandrasekhar V, Amuthan R, Lau YC, Calla E (2016) Characterization of cold-sprayed IN625 and NiCr coatings. J Therm Spray Technol 25(4):725–744

    Google Scholar 

  95. Singh R, Rauwald KH, Wessel E, Mauer G, Schruefer S, Barth A, Vassen R (2017) Effects of substrate roughness and spray-angle on deposition behavior of cold-sprayed Inconel 718. Surf Coat Technol 319:249–259

    Google Scholar 

  96. Karaoglanli AC, Turk A, Ozdemir I (2016) Effect of sintering on mechanical properties of cold sprayed thermal barrier coatings. Surf Eng 32(9):686–690

    Google Scholar 

  97. Parimi LL, Ravi GA, Clark D, Attallah MM (2014) Microstructural and texture development in direct laser fabricated IN718. Mater Charact 89:102–111

    Google Scholar 

  98. Wan HY, Zhou ZJ, Li CP, Chen GF, Zhang GP (2018) Effect of scanning strategy on grain structure and crystallographic texture of Inconel 718 processed by selective laser melting. J Mater Sci Technol 34(10):1799–1804

    Google Scholar 

  99. Varghese P, Vetrivendan E, Dash MK, Ningshen S, Kamaraj M, Mudali UK (2019) Weld overlay coating of Inconel 617 M on type 316 L stainless steel by cold metal transfer process. Surf Coat Technol 357:1004–1013

    Google Scholar 

  100. Evangeline A, Sathiya P (2019) Cold metal arc transfer (CMT) metal deposition of Inconel 625 superalloy on 316L austenitic stainless steel: microstructural evaluation, corrosion and wear resistance properties. Materials Research Express 6(6):1–48

    Google Scholar 

  101. Lyphout C, Fasth A, Nylen P (2014) Mechanical property of HVOF Inconel 718 coating for aeronautic repair. J Therm Spray Technol 23(3):380–388

    Google Scholar 

  102. Tan Y, Shyam A, Choi WB, Lara-Curzio E, Sampath S (2010) Anisotropic elastic properties of thermal spray coatings determined via resonant ultrasound spectroscopy. Acta Mater 58(16):5305–5315

    Google Scholar 

  103. Fauchais P, Vardelle A (2012) Thermal sprayed coatings used against corrosion and corrosive wear. Advanced plasma spray applications 10:1–38

    Google Scholar 

  104. Margadant N, Neuenschwander J, Stauss S, Kaps H, Kulkarni A, Matejicek J, Rössler G (2006) Impact of probing volume from different mechanical measurement methods on elastic properties of thermally sprayed Ni-based coatings on a mesoscopic scale. Surf Coat Technol 200(8):2805–2820

    Google Scholar 

  105. Chen Y, Lu F, Zhang K, Nie P, Hosseini SRE, Feng K, Li Z (2016) Laser powder deposition of carbon nanotube reinforced nickel-based superalloy Inconel 718. Carbon 107:361–370

    Google Scholar 

  106. Calandri M, Yin S, Aldwell B, Calignano F, Lupoi R, Ugues D (2019) Texture and microstructural features at different length scales in Inconel 718 produced by selective laser melting. Materials 12(8):1–32

    Google Scholar 

  107. Popovich VA, Borisov EV, Popovich AA, Sufiiarov VS, Masaylo DV, Alzina L (2017) Functionally graded Inconel 718 processed by additive manufacturing: crystallographic texture, anisotropy of microstructure and mechanical properties. Mater Des 114:441–449

    Google Scholar 

  108. Dinda GP, Dasgupta AK, Mazumder J (2012) Texture control during laser deposition of nickel-based superalloy. Scripta Mater 67(5):503–506

    Google Scholar 

  109. Han GM, Yu JJ, Sun XF, Hu ZQ (2011) Thermo-mechanical fatigue behavior of a single crystal nickel-based superalloy. Mater Sci Eng, A 528(19–20):6217–6224

    Google Scholar 

  110. Tsoutsouva MG, Riberi-Béridot T, Regula G, Reinhart G, Baruchel J, Guittonneau F, Mangelinck-Noël N (2016) In situ investigation of the structural defect generation and evolution during the directional solidification of <110> seeded growth Si. Acta Mater 115:210–223

    Google Scholar 

  111. Okita S, Verestek W, Sakane S, Takaki T, Ohno M, Shibuta Y (2017) Molecular dynamics simulations investigating consecutive nucleation, solidification and grain growth in a twelve-million-atom Fe-system. J Cryst Growth 474:140–145

    Google Scholar 

  112. Azarbarmas M, Aghaie-Khafri M, Cabrera JM, Calvo J (2016) Dynamic recrystallization mechanisms and twining evolution during hot deformation of Inconel 718. Mater Sci Eng A 678:137–152

    Google Scholar 

  113. Davies P, Randle V (2001) Grain boundary engineering and the role of the interfacial plane. Mater Sci Technol 17(6):615–626

    Google Scholar 

  114. Wei HL, Mazumder J, DebRoy T (2015) Evolution of solidification texture during additive manufacturing. Sci Rep 5:1–7

    Google Scholar 

  115. Fanicchia F, Maeder X, Ast J, Taylor AA, Guo Y, Polyakov MN, Axinte DA (2018) Residual stress and adhesion of thermal spray coatings: microscopic view by solidification and crystallisation analysis in the epitaxial CoNiCrAlY single splat. Mater Des 153:36–46

    Google Scholar 

  116. Texier D, Copin E, Flores A, Lee J, Terner M, Hong HU, Lours P (2020) High temperature oxidation of NiCrAlY coated Alloy 625 manufactured by selective laser melting. Surf Coat Technol 398. https://doi.org/10.1016/j.surfcoat.2020.126041

  117. Chen Y, Zhang K, Huang J, Hosseini SRE, Li Z (2016) Characterization of heat affected zone liquation cracking in laser additive manufacturing of Inconel 718. Mater Des 90:586–594

    Google Scholar 

  118. Lee DN (2002) Texture development in thin films. Mater Sci Forum 408:75–94

    Google Scholar 

  119. Coblas DG, Fatu A, Maoui A, Hajjam M (2015) Manufacturing textured surfaces: state of art and recent developments. Proceedings of the institution of mechanical engineers, Part J: Journal of Engineering Tribology 229(1):3–29

    Google Scholar 

  120. Helmer H, Bauereib A, Singer RF, Korner C (2016) Grain structure evolution in Inconel 718 during selective electron beam melting. Mater Sci Eng, A 668:180–187

    Google Scholar 

  121. Zhang Y, Yang L, Dai J, Huang Z, Meng T (2016) Grain growth of Ni-based superalloy IN718 coating fabricated by pulsed laser deposition. Opt Laser Technol 80:220–226

    Google Scholar 

  122. Lee H, Wong SS, Lopatin SD (2003) Correlation of stress and texture evolution during self-and thermal annealing of electroplated Cu films. J Appl Phys 93(7):3796–3804

    Google Scholar 

  123. Vilar R, Santos EC, Ferreira PN, Franco N, Da Silva RC (2009) Structure of NiCrAlY coatings deposited on single-crystal alloy turbine blade material by laser cladding. Acta Mater 57(18):5292–5302

    Google Scholar 

  124. Wan H, Ding Z, Wang J, Yin Y, Guo Q, Gong Y, Yao X (2019) Effects of helium ion irradiation on the high temperature oxidation resistance of Inconel 718 alloy. Surf Coat Technol 363:34–42

    Google Scholar 

  125. Mattox DM (1989) Particle bombardment effects on thin-film deposition: a review. J Vac Sci Technol, A: Vac, Surf Films 7(3):1105–1114

    Google Scholar 

  126. Sun W, Tan AW, Bhowmik A, Xue F, Marinescu I, Liu E (2019) Evaluation of cold sprayed graphene nanoplates–Inconel 718 composite coatings. Surf Coat Technol 378. https://doi.org/10.1016/j.surfcoat.2019.125065

  127. Zhang X, Chen H, Xu L, Xu J, Ren X, Chen X (2019) Cracking mechanism and susceptibility of laser melting deposited Inconel 738 superalloy. Mater Des 183:1–14

    Google Scholar 

  128. Baldridge T, Poling G, Foroozmehr E, Kovacevic R, Metz T, Kadekar V, Gupta MC (2013) Laser cladding of Inconel 690 on Inconel 600 superalloy for corrosion protection in nuclear applications. Opt Lasers Eng 51(2):180–184

    Google Scholar 

  129. Kim H, Cong W, Zhang HC, Liu Z (2017) Laser engineered net shaping of nickel-based superalloy Inconel 718 powders onto AISI 4140 alloy steel substrates: interface bond and fracture failure mechanism. Materials 10(4):1–18

    Google Scholar 

  130. Higo M, Fujita K, Tanaka Y, Mitsushio M, Yoshidome T (2006) Surface morphology of metal films deposited on mica at various temperatures observed by atomic force microscopy. Appl Surf Sci 252(14):5083–5099

    Google Scholar 

  131. Petrov I, Barna PB, Hultman L, Greene JE (2003) Microstructural evolution during film growth. J Vac Sci Technol, A: Vac, Surf Films 21(5):S117–S128

    Google Scholar 

  132. Choy KL (2003) Chemical vapour deposition of coatings. Prog Mater Sci 48(2):57–170

    Google Scholar 

  133. Tjong SC, Chen H (2004) Nanocrystalline materials and coatings. Mater Sci Eng R Rep 45(1–2):1–88

    Google Scholar 

  134. Capolungo L, Marshall PE, McCabe RJ, Beyerlein IJ, Tome CN (2009) Nucleation and growth of twins in Zr: a statistical study. Acta Mater 57(20):6047–6056

    Google Scholar 

  135. Levasseur D, Yue S, Brochu M (2012) Pressureless sintering of cold sprayed Inconel 718 deposit. Mater Sci Eng A 556:343–350

    Google Scholar 

  136. Zhang D, Harris SJ, McCartney DG (2003) Microstructure formation and corrosion behaviour in HVOF-sprayed Inconel 625 coatings. Mater Sci Eng A 344(1–2):45–56

    Google Scholar 

  137. Chlebus E, Gruber K, Kuźnicka B, Kurzac J, Kurzynowski T (2015) Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting. Mater Sci Eng A 639:647–655

    Google Scholar 

  138. Li S, Xiao H, Liu K, Xiao W, Li Y, Han X, Song L (2017) Melt-pool motion, temperature variation and dendritic morphology of Inconel 718 during pulsed-and continuous-wave laser additive manufacturing: a comparative study. Mater Des 119:351–360

    Google Scholar 

  139. Li M, Christofides PD (2006) Computational study of particle in-flight behavior in the HVOF thermal spray process. Chem Eng Sci 61(19):6540–6552

    Google Scholar 

  140. Fauchais P, Montavon G, Bertrand G (2010) From powders to thermally sprayed coatings. J Therm Spray Technol 19(1–2):56–80

    Google Scholar 

  141. Kamnis S, Gu S, Zeoli N (2008) Mathematical modelling of Inconel 718 particles in HVOF thermal spraying. Surf Coat Technol 202(12):2715–2724

    Google Scholar 

  142. Gu S, McCartney DG, Eastwick CN, Simmons K (2004) Numerical modeling of in-flight characteristics of Inconel 625 particles during high-velocity oxy-fuel thermal spraying. J Therm Spray Technol 13(2):200–213

    Google Scholar 

  143. Sidhu TS, Prakash S, Agrawal RD (2006) Studies of the metallurgical and mechanical properties of high velocity oxy-fuel sprayed stellite-6 coatings on Ni-and Fe-based superalloys. Surf Coat Technol 201(1–2):273–281

    Google Scholar 

  144. Sidhu TS, Prakash S, Agrawal RD (2006) Characterisation of NiCr wire coatings on Ni-and Fe-based superalloys by the HVOF process. Surf Coat Technol 200(18–19):5542–5549

    Google Scholar 

  145. Jelvani S, Razavi RS, Barekat M, Dehnavi MR, Erfanmanesh M (2019) Evaluation of solidification and microstructure in laser cladding Inconel 718 superalloy. Opt Laser Technol 120. https://doi.org/10.1016/j.optlastec.2019.105761

  146. Shah K, ul Haq I, Khan A, Shah SA, Khan M, Pinkerton AJ (2014) Parametric study of development of Inconel-steel functionally graded materials by laser direct metal deposition. Mater Des 1980–2015(54):531–538

    Google Scholar 

  147. Mendelev MI, Srolovitz DJ (2002) Impurity effects on grain boundary migration. Modell Simul Mater Sci Eng 10(6):R79–R109

    Google Scholar 

  148. Sulak I, Obrtlík K, Celko L, Chraska T, Jech D, Gejdos P (2018) Low cycle fatigue performance of Ni-based superalloy coated with complex thermal barrier coating. Mater Charact 139:347–354

    Google Scholar 

  149. Solecka M, Petrzak P, Radziszewska A (2015) The microstructure of weld overlay Ni-base alloy deposited on carbon steel by CMT method. In Solid State Phenomena 231:119–124

    Google Scholar 

  150. Kazasidis M, Yin S, Cassidy J, Volkov-Husović T, Vlahović M, Martinović S, Kyriakopoulou E, Lupoi R (2020) Microstructure and cavitation erosion performance of nickel-Inconel 718 composite coatings produced with cold spray. Surf Coat Technol 382. https://doi.org/10.1016/j.surfcoat.2019.125195

  151. Pérez-Andrade LI, Gärtner F, Villa-Vidaller M, Klassen T, Muñoz-Saldaña J, Alvarado-Orozco JM (2019) Optimization of Inconel 718 thick deposits by cold spray processing and annealing. Surf Coat Technol 378. https://doi.org/10.1016/j.surfcoat.2019.124997

  152. Chromik RR, Goldbaum D, Shockley JM, Yue S, Irissou E, Legoux JG, Randall NX (2010) Modified ball bond shear test for determination of adhesion strength of cold spray splats. Surf Coat Technol 205(5):1409–1414

    Google Scholar 

  153. [c] Metallic Materials-Tensile Testing-Pat-: Method of Test at Room Temperature (2016) EN ISO 6892–1

  154. Rendler NJ, Vigness I (1966) Hole-drilling strain-gage method of measuring residual stresses. Exp Mech 6(12):577–586

    Google Scholar 

  155. Obelode E, Gibmeier J (2014) Influence of the interfacial roughness on residual stress analysis of thick film systems by incremental hole drilling. In Mater Sci Forum (768):136–143. Trans Tech Publications Ltd

  156. Held E, Gibmeier J (2014) Residual stress analysis of thick film systems by the incremental hole-drilling method. HTM Journal of Heat Treatment and Materials 69(2):71–79

    Google Scholar 

  157. Klein CA (2000) How accurate are Stoney’s equation and recent modifications. J Appl Phys 88(9):5487–5489

    Google Scholar 

  158. Mutter M, Mauer G, Mücke R, Guillon O, Vaben R (2017) Correlation of splat morphologies with porosity and residual stress in plasma-sprayed YSZ coatings. Surf Coat Technol 318:157–169

    Google Scholar 

  159. Verdi D, Garrido MA, Munez CJ, Poza P (2015) Cr3C2 incorporation into an Inconel 625 laser cladded coating: effects on matrix microstructure, mechanical properties and local scratch resistance. Mater Des 67:20–27

    Google Scholar 

  160. Cui S, Miao Q, Liang W, Li B (2018) Oxidation behavior of NiCoCrAlY coatings deposited by double-Glow plasma alloying. Appl Surf Sci 428:781–787

    Google Scholar 

  161. Bull SJ, Berasetegui EG (2006) An overview of the potential of quantitative coating adhesion measurement by scratch testing. Tribol Int 39(2):99–114

    Google Scholar 

  162. Akono AT, Ulm FJ (2014) An improved technique for characterizing the fracture toughness via scratch test experiments. Wear 313(1–2):117–124

    Google Scholar 

  163. Kermouche G, Aleksy N, Loubet JL, Bergheau JM (2009) Finite element modeling of the scratch response of a coated time-dependent solid. Wear 267(11):1945–1953

    Google Scholar 

  164. Cavaliere P (2009) Fatigue properties and crack behavior of ultra-fine and nanocrystalline pure metals. Int J Fatigue 31(10):1476–1489

    Google Scholar 

  165. Verdi D, Garrido MA, Munez CJ, Poza P (2014) Mechanical properties of Inconel 625 laser cladded coatings: depth sensing indentation analysis. Mater Sci Eng, A 598:15–21

    Google Scholar 

  166. Seo D, Ogawa K, Nakao Y, Miura H, Shoji T (2009) Influence of high-temperature creep stress on growth of thermally grown oxide in thermal barrier coatings. Surf Coat Technol 203(14):1979–1983

    Google Scholar 

  167. Ibupoto FA, Lim J, Kim S, Kim BJ, Baik S, Kim MK (2019) Inconel 617 alloy creep life augmentation by graphene transfer coating. J Mech Sci Technol 33(12):5809–5815

    Google Scholar 

  168. Fouvry S, Kapsa P (2001) An energy description of hard coating wear mechanisms. Surf Coat Technol 138(2–3):141–148

    Google Scholar 

  169. Sahithya K, Balasundar I, Pant P, Raghu T, Nandi HK, Singh V, Ramakrishna M (2019) Deformation behaviour of an as-cast nickel base superalloy during primary hot working above and below the gamma prime solvus. Mater Sci Eng, A 754:521–534

    Google Scholar 

  170. De Freitas FE, Briguente FP, Dos Reis AG, De Vasconcelos G, Reis DAP (2019) Investigation on the microstructure and creep behavior of laser remelted thermal barrier coating. Surf Coat Technol 369:257–264

    Google Scholar 

  171. Pan Z, Feng Y, Lu YT, Lin YF, Hung TP, Hsu FC, Liang SY (2017) Microstructure-sensitive flow stress modeling for force prediction in laser assisted milling of Inconel 718. Manuf Rev 4(6):1–9

    Google Scholar 

  172. Arisoy YM, Guo C, Kaftanoglu B, Ozel T (2016) Investigations on microstructural changes in machining of Inconel 100 alloy using face turning experiments and 3D finite element simulations. Int J Mech Sci 107:80–92

    Google Scholar 

  173. Fotovvati B, Dehghanghadikolaei A, Namdari N (2020) Laser-assisted coating techniques and surface modifications: a short review. Part Sci Technol 1–10

  174. Pomeroy MJ (2005) Coatings for gas turbine materials and long term stability issues. Mater Des 26(3):223–231

    Google Scholar 

  175. Ahrens M, Vaben R, Stöver D, Lampenscherf S (2004) Sintering and creep processes in plasma-sprayed thermal barrier coatings. J Therm Spray Technol 13(3):432–442

    Google Scholar 

  176. Yung TY, Chen TC, Tsai KC, Lu WF, Huang JY, Liu TY (2019) Thermal spray coatings of Al, ZnAl and Inconel 625 alloys on SS304L for anti-saline corrosion. Coatings 9(1):1–12

    Google Scholar 

  177. Tian ZH, Zhao YT, Jiang YJ, Ren HP (2020a) Microstructure and properties of Inconel 625+ WC composite coatings prepared by laser cladding. Rare Metals 1–11

  178. Tian ZH, Zhao YT, Jiang YJ, Ren HP (2020b) Electrochemical corrosion behavior and microstructural characterization of HVOF sprayed Inconel-718 coating on gray cast iron. J Fail Anal Prev 1–11

  179. Oksa M, Auerkari P, Salonen J, Varis T (2014) Nickel-based HVOF coatings promoting high temperature corrosion resistance of biomass-fired power plant boilers. Fuel Process Technol 125:236–245

    Google Scholar 

  180. Zahrani EM, Alfantazi AM (2012) Molten salt induced corrosion of Inconel 625 superalloy in PbSO4–Pb3O4–PbCl2–Fe2O3–ZnO environment. Corros Sci 65:340–359

    Google Scholar 

  181. Amudha A, Shashikala HD, Nagaraja HS (2019) Corrosion protection of low-cost carbon steel with SS-309Mo and Inconel-625 bimetallic weld overlay. Materials Research Express 6(4):1–18

    Google Scholar 

  182. Stanciu EM, Pascu A, Ţierean MH, Voiculescu I, Roată IC, Croitoru C, Hulka I (2016) Dual coating laser cladding of NiCrBSi and Inconel 718. Mater Manuf Processes 31(12):1556–1564

    Google Scholar 

  183. Katiki K, Yadlapati S, Chidepudi SNS, Manikandan M, Arivarasu M, Devendranath Ramkumar K, Arivazhagan N (2014) Performance of plasma spray coatings on Inconel 625 in air oxidation and molten salt environment at 800 °C. Int J ChemTech Res 6(5):2744–2749

    Google Scholar 

  184. Lorenzoni RA, Gasparini RP, Santos ACD, Luz TDS, Macedo MCSD (2019) A study on the intergranular corrosion and pitting resistance of Inconel 625 coating by PTA-P. Corros Eng Sci Technol 54(1):62–74

    Google Scholar 

  185. Niaz A, Bakare MS (2015) Electrochemical corrosion testing and characterization of potential assisted passive layer on HVOF Inconel 625 coating. Corros Rev 33(1–2):63–76

    Google Scholar 

  186. Lee HS, Singh JK, Ismail MA, Bhattacharya C (2016) Corrosion resistance properties of aluminum coating applied by arc thermal metal spray in SAE J2334 solution with exposure periods. Metals 6(3):55

    Google Scholar 

  187. Mwema FM, Oladijo OP, Akinlabi SA, Akinlabi ET (2018) Properties of physically deposited thin aluminium film coatings: a review. J Alloy Compd 747:306–323

    Google Scholar 

  188. Botello-Zubiate ME, Alvarez A, Martı́nez-Villafane A, Almeraya-Calderon F, Matutes-Aquino JA (2004) Influence of magnetic water treatment on the calcium carbonate phase formation and the electrochemical corrosion behavior of carbon steel. J Alloy Compd 369(1–2):256–259

    Google Scholar 

  189. Galedari SA, Mahdavi A, Azarmi F, Huang Y, McDonald A (2019) A comprehensive review of corrosion resistance of thermally-sprayed and thermally-diffused protective coatings on steel structures. J Therm Spray Technol 28(4):645–677

    Google Scholar 

  190. Abdallah M, Zaafarany IA, Abd El Wanees S, Assi R (2014) Corrosion behavior of nickel electrode in NaOH solution and its inhibition by some natural oils. Int J Electrochem Sci 9(3):1071–1086

    Google Scholar 

  191. Niaz A, Khan SU (2016) A comprehensive pitting study of high velocity oxygen fuel Inconel 625 coating by using electrochemical testing techniques. J Mater Eng Perform 25(1):280–289

    Google Scholar 

  192. Zhang XL, Jiang ZH, Yao ZP, Song Y, Wu ZD (2009) Effects of scan rate on the potentiodynamic polarization curve obtained to determine the Tafel slopes and corrosion current density. Corros Sci 51(3):581–587

    Google Scholar 

  193. McCafferty E (2005) Validation of corrosion rates measured by the Tafel extrapolation method. Corros Sci 47(12):3202–3215

    Google Scholar 

  194. Xing X, Di X, Wang B (2014) The effect of post-weld heat treatment temperature on the microstructure of Inconel 625 deposited metal. J Alloy Compd 593:110–116

    Google Scholar 

  195. Lippold JC, Kiser SD, DuPont JN (2011) Welding metallurgy and weldability of nickel-base alloys. John Wiley & Sons

    Google Scholar 

  196. Han Y, Chen H, Gao D, Yang G, Liu B, Chu Y, Gao Y (2017) Microstructural evolution of NiCoCrAlHfYSi and NiCoCrAlTaY coatings deposited by AC-HVAF and APS. J Therm Spray Technol 26(8):1758–1775

    Google Scholar 

Download references

Acknowledgements

The authors will like to appreciate the management of the University of Johannesburg for their support through the URC scholarship award.

Funding

The authors received financial support from the University of Johannesburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunle Babaremu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: To insert reference [59] in Figure 10 caption.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babaremu, K., Jen, TC., Oladijo, P. et al. A systematic review of the effects of deposition parameters on the properties of Inconel thin films. Int J Adv Manuf Technol 119, 4125–4145 (2022). https://doi.org/10.1007/s00170-021-08379-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-08379-3

Keywords

Navigation