Skip to main content

Advertisement

Log in

Sustainability assessment of incremental sheet forming: a review

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Although incremental sheet forming (ISF) is featured with greater flexibility, lower cost, and shorter leading time, there is less comprehensive sustainability assessment for ISF. In order to summarize the research progress on the sustainability evaluation of ISF and further explore its potential application scenario specifically, the research with respect to energy consumption and environmental impact of ISF are reviewed in this paper. First, the characteristics and research status of ISF including geometry accuracy improvement, forming force prediction, and heating-aided ISF are introduced. Then, study on the influence of processing parameters, equipment, and consumables on energy consumption (both deformation energy and machine tool energy) and forming efficiency are comprehensively reviewed. Current research indicates that neither deformation energy consumption nor electric energy consumption of ISF is lower than stamping process since ISF has long motion trajectory and forming time. In addition, the current methods (such as Life Cycle Assess method) to assess the environmental impact of ISF are discussed. Additionally, the environmental impact of ISF mainly reflects on sheet material, energy consumption, and lubrication oil. Moreover, the comparison of the ISF process and the other processes with regard to sustainability is analyzed, which indicates that ISF has obvious advantage and broad prospects when the cost of molds is considered and the batch size is generally less than 1000. The study provides valuable guidance on the further improvement of ISF towards more efficiency and green manufacturing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Xie F, Zhang B, Wang N (2021) Non-linear relationship between energy consumption transition and green total factor productivity: a perspective on different technology paths. Sustain Prod Consum 28:91–104. https://doi.org/10.1016/j.spc.2021.03.036

    Article  Google Scholar 

  2. Leszak E (1967) Apparatus and process for incremental dieless forming

  3. Eyckens P, Belkassem B, Henrard C et al (2011) Strain evolution in the single point incremental forming process: digital image correlation measurement and finite element prediction. Int J Mater Form 4:55–71. https://doi.org/10.1007/s12289-010-0995-6

    Article  Google Scholar 

  4. Ablat MA, Qattawi A (2017) Numerical simulation of sheet metal forming: a review. Int J Adv Manuf Technol 89:1235–1250. https://doi.org/10.1007/s00170-016-9103-5

    Article  Google Scholar 

  5. Wang H, Zhang R, Zhang H et al (2018) Novel strategies to reduce the springback for double-sided incremental forming 973–979

  6. Ai S, Long H (2019) A review on material fracture mechanism in incremental sheet forming. Int J Adv Manuf Technol 104:33–61. https://doi.org/10.1007/s00170-019-03682-6

    Article  Google Scholar 

  7. Chang Z, Chen J (2020) Mechanism of the twisting in incremental sheet forming process. J Mater Process Technol 276:116396. https://doi.org/10.1016/j.jmatprotec.2019.116396

    Article  Google Scholar 

  8. Guzmán CF, Yuan S, Duchêne L et al (2018) Damage prediction in single point incremental forming using an extended Gurson model. Int J Solids Struct 151:45–56. https://doi.org/10.1016/j.ijsolstr.2017.04.013

    Article  Google Scholar 

  9. Duflou JR, Habraken A, Cao J, et al (2018) Single point incremental forming: state-of-the-art and prospects. Int. J. Mater. Form.11: 743–773. https://doi.org/10.1016/j.ijsolstr.2017.04.013

  10. Jeswiet J, Micari F, Hirt G et al (2005) Asymmetric single point incremental forming of sheet metal. CIRP Ann Manuf Technol 54:88–114. https://doi.org/10.1016/s0007-8506(07)60021-3

    Article  Google Scholar 

  11. Liu Z (2018) Heat-assisted incremental sheet forming: a state-of-the-art review

  12. Wen T, Chen X, Zheng J et al (2017) Multi-directional incremental sheet forming—a novel methodology for flexibly producing thin-walled parts. Int J Adv Manuf Technol 91:1909–1919. https://doi.org/10.1007/s00170-016-9923-3

    Article  Google Scholar 

  13. Peng W, Ou H, Becker A (2019) Double-sided incremental forming: a review. J Manuf Sci Eng Trans ASME 141. https://doi.org/10.1115/1.4043173

  14. Wang C, He A, Weegink KJ et al (2020) 3D surface representation and trajectory optimization with a learning-based adaptive model predictive controller in incremental forming. J Manuf Process 58:796–810. https://doi.org/10.1016/j.jmapro.2020.08.062

    Article  Google Scholar 

  15. Jung KS, Yu JH, Chung WJ, Lee CW (2020) Tool path design of the counter single point incremental forming process to decrease shape error. Materials (Basel) 13:1–16. https://doi.org/10.3390/ma13214719

    Article  Google Scholar 

  16. Behera AK, Lauwers B, Duflou JR (2015) Tool path generation for single point incremental forming using intelligent sequencing and multi-step mesh morphing techniques. Int J Mater Form 8:517–532. https://doi.org/10.1007/s12289-014-1174-y

    Article  Google Scholar 

  17. Chang Z, Li M, Chen J (2019) Analytical modeling and experimental validation of the forming force in several typical incremental sheet forming processes. Int J Mach Tools Manuf 140:62–76. https://doi.org/10.1016/j.ijmachtools.2019.03.003

    Article  Google Scholar 

  18. Chang Z, Chen J (2019) Analytical model and experimental validation of surface roughness for incremental sheet metal forming parts. Int J Mach Tools Manuf 146:103453. https://doi.org/10.1016/j.ijmachtools.2019.103453

    Article  Google Scholar 

  19. Oraon M, Sharma V, Roy MK (2020) Analysis on surface roughness of Al-Mg alloy in single point incremental forming (SPIF). AIP Conf Proc 2273:7. https://doi.org/10.1063/5.0024552

  20. Ingarao G, Ambrogio G, Gagliardi F, Di Lorenzo R (2012) A sustainability point of view on sheet metal forming operations: material wasting and energy consumption in incremental forming and stamping processes. J Clean Prod 29–30:255–268. https://doi.org/10.1016/j.jclepro.2012.01.012

    Article  Google Scholar 

  21. Gupta P, Szekeres A, Jeswiet J (2020) Manufacture of an aerospace component with hybrid incremental forming methodology. Int J Mater Form 50–52. https://doi.org/10.1007/s12289-020-01601-9

  22. Ndip-agbor E, Cheng P, Moser N et al (2019) Prediction of rigid body motion in multi-pass single point incremental forming. J Mater Process Tech 269:117–127. https://doi.org/10.1016/j.jmatprotec.2019.02.007

    Article  Google Scholar 

  23. Gandla PK, Inturi V, Kurra S, Radhika S (2020) Evaluation of surface roughness in incremental forming using image processing based methods. Meas J Int Meas Confed 164:108055. https://doi.org/10.1016/j.measurement.2020.108055

    Article  Google Scholar 

  24. Gajjar S, Sisodia V, Jagtap R et al (2021) Experimental investigation on geometric accuracy and surface roughness of formed part in multistage single point incremental forming (spif) process. Springer Singapore

  25. Shi Y, Zhang W, Cao J, Ehmann KF (2019) Experimental study of water jet incremental micro-forming with supporting dies. J Mater Process Tech 268:117–131. https://doi.org/10.1016/j.jmatprotec.2019.01.012

    Article  Google Scholar 

  26. Singh PP, Madan J (2016) A computer-aided system for sustainability assessment for the die-casting process planning. Int J Adv Manuf Technol 87:1283–1298. https://doi.org/10.1007/s00170-013-5232-2

    Article  Google Scholar 

  27. Cao X, Zhang H, Wang Y (2021) Energy conservation and CO2 emission reduction roadmap in China’s energy-intensive industries based on a bottom-up approach. Sustain Prod Consum 27:1424–1436. https://doi.org/10.1016/j.spc.2021.03.018

    Article  Google Scholar 

  28. Ingarao G, Kellens K, Behera AK et al (2013) Electric energy consumption analysis of SPIF processes. Key Eng Mater 549:547–554. https://doi.org/10.4028/www.scientific.net/KEM.549.547

    Article  Google Scholar 

  29. Ingarao G, Vanhove H, Kellens K, Duflou JR (2014) A comprehensive analysis of electric energy consumption of single point incremental forming processes. J Clean Prod 67:173–186. https://doi.org/10.1016/j.jclepro.2013.12.022

    Article  Google Scholar 

  30. Bagudanch I, Garcia-Romeu ML, Ferrer I, Lupiañez J (2013) The effect of process parameters on the energy consumption in Single Point Incremental Forming. Procedia Eng 63:346–353. https://doi.org/10.1016/j.proeng.2013.08.208

    Article  Google Scholar 

  31. Ambrogio G, Ingarao G, Gagliardia F, Di Lorenzo R (2014) Analysis of energy efficiency of different setups able to perform single point incremental forming (SPIF) processes. Procedia CIRP 15:111–116. https://doi.org/10.1016/j.procir.2014.06.055

    Article  Google Scholar 

  32. Bagudanch I, Garcia-Romeu ML, Sabater M (2016) Incremental forming of polymers: process parameters selection from the perspective of electric energy consumption and cost. J Clean Prod 112:1013–1024. https://doi.org/10.1016/j.jclepro.2015.08.087

    Article  Google Scholar 

  33. Duflou JR, Sutherland JW, Dornfeld D et al (2012) Towards energy and resource efficient manufacturing: a processes and systems approach. CIRP Ann Manuf Technol 61:587–609. https://doi.org/10.1016/j.cirp.2012.05.002

    Article  Google Scholar 

  34. Li Y, Liu F, Xu C et al (2019) Investigation of the effect of process parameters on energy consumption in incremental sheet forming. Procedia CIRP 80:50–55. https://doi.org/10.1016/j.procir.2019.01.053

    Article  Google Scholar 

  35. Li Y, Lu H, Daniel WJT, Meehan PA (2015) Investigation and optimization of deformation energy and geometric accuracy in the incremental sheet forming process using response surface methodology. Int J Adv Manuf Technol 79:2041–2055. https://doi.org/10.1007/s00170-015-6986-5

    Article  Google Scholar 

  36. Yao Z, Li Y, Yang M et al (2017) Parameter optimization for deformation energy and forming quality in single point incremental forming process using response surface methodology. Adv Mech Eng 9:1–15. https://doi.org/10.1177/1687814017710118

    Article  Google Scholar 

  37. Garg A, Gao L, Panda BN, Mishra S (2017) A comprehensive study in quantification of response characteristics of incremental sheet forming process. Int J Adv Manuf Technol 89:1353–1365. https://doi.org/10.1007/s00170-016-9183-2

    Article  Google Scholar 

  38. Ambrogio G, Gagliardi F, Filice L, Aghinelli O (2012) Towards energy efficiency in incremental forming of Titanium. Key Eng Mater 504–506:821–826. https://doi.org/10.4028/www.scientific.net/KEM.504-506.821

    Article  Google Scholar 

  39. Cooper DR, Rossie KE, Gutowski TG (2017) The energy requirements and environmental impacts of sheet metal forming: an analysis of five forming processes. J Mater Process Technol 244:116–135. https://doi.org/10.1016/j.jmatprotec.2017.01.010

    Article  Google Scholar 

  40. Liu F, Li X, Li Y et al (2020) Modelling of the effects of process parameters on energy consumption for incremental sheet forming process. J Clean Prod 250:119456. https://doi.org/10.1016/j.jclepro.2019.119456

    Article  Google Scholar 

  41. Branker K, Adams D, Jeswiet J (2012) Initial analysis of cost, energy and carbon dioxide emissions in single point incremental forming — producing an aluminium hat. Int J Sustain Eng 5:188–198. https://doi.org/10.1080/19397038.2011.634033

    Article  Google Scholar 

  42. Ingarao G, Ambrogio G, Lorenzo RD, Micari F (2011) On the sustainability evaluation in sheet metal forming processes

  43. Kara S, Li W (2011) Unit process energy consumption models for material removal processes. CIRP Ann Manuf Technol 60:37–40. https://doi.org/10.1016/j.cirp.2011.03.018

    Article  Google Scholar 

  44. Dittrich MA, Gutowski TG, Cao J et al (2012) Exergy analysis of incremental sheet forming. Prod Eng 6:169–177. https://doi.org/10.1007/s11740-012-0375-9

    Article  Google Scholar 

  45. Milford RL, Allwood JM, Cullen JM (2011) Assessing the potential of yield improvements, through process scrap reduction, for energy and CO2 abatement in the steel and aluminium sectors. Resour Conserv Recycl 55:1185–1195. https://doi.org/10.1016/j.resconrec.2011.05.021

    Article  Google Scholar 

  46. Worrell E, Allwood J, Gutowski T (2016) The role of material efficiency in environmental stewardship. Annu Rev Environ Resour 41:575–598. https://doi.org/10.1146/annurev-environ-110615-085737

    Article  Google Scholar 

  47. Vadenbo C, Hellweg S, Astrup TF (2017) Let’s be clear(er) about substitution: a reporting framework to account for product displacement in life cycle assessment. J Ind Ecol 21:1078–1089. https://doi.org/10.1111/jiec.12519

    Article  Google Scholar 

  48. Ingarao G, Zaheer O, Campanella D et al (2020) An energy efficiency analysis of single point incremental forming as an approach for sheet metal based component reuse. Procedia CIRP 90:540–545. https://doi.org/10.1016/j.procir.2020.01.068

    Article  Google Scholar 

  49. Ingarao G, Zaheer O, Campanella D, Fratini L (2020) Re-forming end-of-life components through single point incremental forming. Manuf Lett 24:132–135. https://doi.org/10.1016/j.mfglet.2020.05.001

    Article  Google Scholar 

  50. Cooper DR, Gutowski TG (2018) Prospective environmental analyses of emerging technology: a critique, a proposed methodology, and a case study on incremental sheet forming. J Ind Ecol. https://doi.org/10.1111/jiec.12748

    Article  Google Scholar 

  51. Anghinelli O, Ambrogio G, Di Lorenzo R, Ingarao G (2011) Environmental costs of single point incremental forming. In Special Edition: 10th International Conference on Technology of Plasticity, ICTP 2011. pp 525–530

  52. Emmens WC (2011) Investigation of energy, carbon dioxide emissions and costs in single point incremental forming. In SpringerBriefs in Applied Sciences and Technology. pp 51–55

  53. Cao H, Li H, Cheng H et al (2012) A carbon efficiency approach for life-cycle carbon emission characteristics of machine tools. J Clean Prod 37:19–28. https://doi.org/10.1016/j.jclepro.2012.06.004

    Article  Google Scholar 

  54. Ingarao G, Zaheer O, Fratini L (2021) Manufacturing processes as material and energy efficiency strategies enablers: the case of Single Point Incremental Forming to reshape end-of-life metal components. CIRP J Manuf Sci Technol 32:145–153. https://doi.org/10.1016/j.cirpj.2020.12.003

    Article  Google Scholar 

  55. Al-Ghamdi KA, Hussain G (2017) On the CO2 characterization in incremental forming of roll bonded laminates. J Clean Prod 156:214–225. https://doi.org/10.1016/j.jclepro.2017.04.047

    Article  Google Scholar 

  56. Hirt G, Ames J BM (2003) Economical and ecological benefits of CNC incremental sheet forming (ISF). In Proceedings of the International Conference on ME

  57. Petek A, Gantar G, Pepelnjak T, Kuzman K (2007) Economical and ecological aspects of single point incremental forming versus deep drawing technology. Key Eng Mater 344:931–938. https://doi.org/10.4028/www.scientific.net/kem.344.931

    Article  Google Scholar 

  58. Allwood JM, King GPF, Duflou J (2005) A structured search for applications of the incremental sheet-forming process by product segmentation. Proc Inst Mech Eng Part B J Eng Manuf 219:239–244. https://doi.org/10.1243/095440505X8145

    Article  Google Scholar 

  59. Bradley P (2021) An institutional economics framework to explore sustainable production and consumption. Sustain Prod Consum 27:1317–1339. https://doi.org/10.1016/j.spc.2021.02.035

    Article  Google Scholar 

  60. Wai C, Shi P, Rugrungruang F et al (2011) Glocalized solutions for sustainability in manufacturing. Glocalized Solut Sustain Manuf 389–394. https://doi.org/10.1007/978-3-642-19692-8

  61. Du Y, Yi Q, Li C, Liao L (2015) Life cycle oriented low-carbon operation models of machinery manufacturing industry. J Clean Prod 91:145–157. https://doi.org/10.1016/j.jclepro.2014.12.028

    Article  Google Scholar 

  62. Li L, Huang H, Liu Z et al (2016) An energy-saving method to solve the mismatch between installed and demanded power in hydraulic press. J Clean Prod 139:636–645. https://doi.org/10.1016/j.jclepro.2016.08.063

    Article  Google Scholar 

Download references

Funding

This work is supported by National Natural Science Foundation of China (51975328), Postdoctoral Innovation Project of Shandong Province (201701011), and Young Scholars Program of Shandong University (2018WLJH55).

Availability data and material

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

Author information

Authors and Affiliations

Authors

Contributions

Liu Fuyuan, literature collecting, literature analyzing, and original manuscript preparation; Li Yanle, reviewing and supervising the final version; Shahid Ghafoor, manuscript revising; Cheng Zinan, manuscript revising and literature collecting; Li Fangyi and Li Jianfeng: resources and writing — review and editing

Corresponding author

Correspondence to Yanle Li.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

All authors agreed to participate in this research.

Consent for publication

All authors agreed to publish this work.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Li, Y., Ghafoor, S. et al. Sustainability assessment of incremental sheet forming: a review. Int J Adv Manuf Technol 119, 1385–1405 (2022). https://doi.org/10.1007/s00170-021-08368-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-08368-6

Keywords

Navigation