Skip to main content
Log in

Planar and nonplanar slicing algorithms for fused deposition modeling technology: a critical review

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Fused deposition modeling (FDM) is one of the most popular and ubiquitous additive manufacturing methods, which uses a layering procedure to build 3D models layers-upon-layers. Since the layers are the constituents of the resulted 3D part, the layering process can directly affect the part’s surface finish and mechanical properties, which are the two major drawbacks in FDM. To this end, investigating different layering/slicing algorithms can deepen the understanding of the challenges and gaps in FDM, which will help improve the quality of the 3D printed parts. In this review, slicing algorithms developed for FDM technology are categorized into two main groups: planar and nonplanar. While planar algorithms generate flat layers, nonplanar algorithms provide curved and out-of-plane layers, increasing build speed, eliminating support structures, smoothening the outer surface, and enhancing mechanical properties. Planar algorithms are subdivided into single-axis and multi-axis algorithms. Single-axis printing confines the build direction along the perpendicular axis of the build platform, while multi-axis printing can change the build direction for different layers. Conventional Cartesian printers can achieve single-axis planar printing and are the dominant approach in commercial FDM printers. Upgraded hardware and complicated calculations are needed to enable the printer to deploy multi-axis planar and nonplanar printing capability, which are the downsides of these advanced methods. This review broadly discusses the impact of the slicing algorithm on the surface quality, build time, support structure, and mechanical properties of 3D printed parts. Current challenges and prospective solutions are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Sathies T, Senthil P, Anoop MS (2020) A review on advancements in applications of fused deposition modelling process. Rapid Prototyp J 26:669–687. https://doi.org/10.1108/RPJ-08-2018-0199

    Article  Google Scholar 

  2. ASTM (2012) F2792-12a: Standard terminology for additive manufacturing technologies, (Withdrawn 2015). ASTM International, West Conshohocken, PA

  3. Vyavahare S, Teraiya S, Panghal D, Kumar S (2020) Fused deposition modelling: a review. Rapid Prototyp J 26:176–201

    Article  Google Scholar 

  4. Xu J, Gu X, Ding D et al (2018) A review of slicing methods for directed energy deposition based additive manufacturing. Rapid Prototyp J 24:1012–1025. https://doi.org/10.1108/RPJ-10-2017-0196

    Article  Google Scholar 

  5. Mohan Pandey P, Reddy NV, Dhande SG (2003) Slicing procedures in layered manufacturing: a review. Rapid Prototyping Journal 9:274–288. https://doi.org/10.1108/13552540310502185

    Article  Google Scholar 

  6. Zhao Z, Laperrière L (2000) Adaptive direct slicing of the solid model for rapid prototyping. Int J Prod Res 38:69–83. https://doi.org/10.1080/002075400189581

    Article  MATH  Google Scholar 

  7. Minetto R, Volpato N, Stolfi J et al (2017) An optimal algorithm for 3D triangle mesh slicing. Comput Aided Des 92:1–10. https://doi.org/10.1016/j.cad.2017.07.001

    Article  Google Scholar 

  8. Gregori RMMH, Volpato N, Minetto R, da Silva MVG (2014) Slicing triangle meshes: an asymptotically optimal algorithm. In Apduhan B, Rocha AM, Misra S, et al (eds) 2014 14th International Conference on Computational Science and Its Applications. IEEE, pp 252–255

  9. Bhatt PM, Malhan RK, Shembekar A, v, et al (2020) Expanding capabilities of additive manufacturing through use of robotics technologies: a survey. Addit Manuf 31:100933. https://doi.org/10.1016/j.addma.2019.100933

    Article  Google Scholar 

  10. Wasserfall F, Hendrich N, Zhang J (2017) Adaptive slicing for the FDM process revisited. IEEE Int Conf Autom Sci Eng 49–54. https://doi.org/10.1109/COASE.2017.8256074

  11. Ahlers D, Wasserfall F, Hendrich N, Zhang J (2019) 3D printing of nonplanar layers for smooth surface generation. IEEE Int Conf Autom Sci Eng 1737–1743. https://doi.org/10.1109/COASE.2019.8843116

  12. Davis JD, Kutzer MD, Chirikjian GS (2016) Algorithms for multilayer conformal additive manufacturing. J Comput Inf Sci Eng 16:1–12. https://doi.org/10.1115/1.4033047

    Article  Google Scholar 

  13. Shembekar AV, Yoon YJ, Kanyuck A, Gupta SK (2018) Trajectory planning for conformal 3D printing using non-planar layers. Proc ASME Des Eng Tech Conf 1A–2018:1–12. https://doi.org/10.1115/DETC201885975

    Article  Google Scholar 

  14. Fang G, Zhang T, Zhong S et al (2020) Reinforced FDM: multi-axis filament alignment with controlled anisotropic strength. ACM Trans Graph 39. https://doi.org/10.1145/3414685.3417834

  15. Duty CE, Failla JA, Kim S et al (2020) Reducing mechanical anisotropy in extrusion-based printed parts. Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 1602–1611

  16. Szilvśi-Nagy M, Mátyási G (2003) Analysis of STL files. Math Comput Model 38:945–960. https://doi.org/10.1016/S0895-7177(03)90079-3

    Article  MathSciNet  MATH  Google Scholar 

  17. Hu Y, Xin J, Huo G et al (2018) A slicing algorithm based on virtual edge for 3D printing. In Jakobczak DJ, Omidvar H, Iyer VG (eds) Proceedings of the 2018 3rd International Conference on Electrical, Automation and Mechanical Engineering (EAME 2018). Atlantis Press, Paris, France, pp 320–324

  18. Jamieson R, Hacker H (1995) Direct slicing of CAD models for rapid prototyping. Rapid Prototyp J 1:4–12. https://doi.org/10.1108/13552549510086826

    Article  Google Scholar 

  19. Choi SH, Kwok KT (1999) A memory efficient slicing algorithm for large STL flies. In Bourell DL, Beaman JJ, Crawford RH, et al (eds) Solid Freeform Fabrication Proceedings pp 155–162

  20. Huang S-H, Zhang L-C, Han M (2002) An effective error-tolerance slicing algorithm for STL files. Int J Adv Manuf Technol 20:363–367. https://doi.org/10.1007/s001700200164

    Article  Google Scholar 

  21. Hu J (2020) Study on STL-based slicing process for 3D printing. Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2017 885–895

  22. Sun SH, Chiang HW, Lee MI (2007) Adaptive direct slicing of a commercial CAD model for use in rapid prototyping. Int J Adv Manuf Technol 34:689–701. https://doi.org/10.1007/s00170-006-0651-y

    Article  Google Scholar 

  23. Jin G, Li W, Gao L (2011) Tool-paths optimization of rapid prototyping to support product verification and collaboration. In Proceedings of the 2011 15th International Conference on Computer Supported Cooperative Work in Design, CSCWD 2011. IEEE, pp 120–124

  24. Baqer AWA, Abbas TF (2018) Direct slicing techniques of 3D surface model in layers manufacturing. Int J Energy Environ 2:963–974

  25. Zhao G, Ma G, Feng J, Xiao W (2018) Nonplanar slicing and path generation methods for robotic additive manufacturing. Int J Adv Manuf Technol 96:3149–3159. https://doi.org/10.1007/s00170-018-1772-9

    Article  Google Scholar 

  26. Hull CW (1984) Apparatus for production of three-dimensional objects by stereolithography

  27. Grimm T (2004) User’s guide to rapid prototyping. Soc Manuf Eng

  28. Sabourin E, Houser SA, Bøhn JH (1997) Accurate exterior, fast interior layered manufacturing. Rapid Prototyp J 3:44–52. https://doi.org/10.1108/13552549710176662

    Article  Google Scholar 

  29. Sabourin E, Houser SA, Bøhn JH (1996) Adaptive slicing using stepwise uniform refinement. Rapid Prototyping Journal 2:20–26. https://doi.org/10.1108/13552549610153370

    Article  Google Scholar 

  30. Tyberg J, Helge Bøhn J (1998) Local adaptive slicing. Rapid Prototyp J 4:118–127. https://doi.org/10.1108/13552549810222993

    Article  Google Scholar 

  31. Huang B, Singamneni S (2014) Adaptive slicing and speed-and time-dependent consolidation mechanisms in fused deposition modeling. Proc Ins Mech Eng Part B J Eng Manuf 228:111–126. https://doi.org/10.1177/0954405413497474

    Article  Google Scholar 

  32. Gadelmawla ES, Koura MM, Maksoud TMA et al (2002) Roughness parameters. J Mater Process Technol 123:133–145. https://doi.org/10.1016/S0924-0136(02)00060-2

    Article  Google Scholar 

  33. Singh K (2018) Experimental study to prevent the warping of 3D models in fused deposition modeling. Int J Plast Technol 22:177–184. https://doi.org/10.1007/s12588-018-9206-y

    Article  Google Scholar 

  34. Guerrero-de-Mier A, Espinosa MM, Domínguez M (2015) Bricking: a new slicing method to reduce warping. Procedia Eng 132:126–131. https://doi.org/10.1016/j.proeng.2015.12.488

    Article  Google Scholar 

  35. McPherson J, Zhou W (2018) A chunk-based slicer for cooperative 3D printing. Rapid Prototyp J 24:1436–1446. https://doi.org/10.1108/RPJ-07-2017-0150

    Article  Google Scholar 

  36. Lensgraf S, Mettu RR (2016) Beyond layers: A 3D-aware toolpath algorithm for fused filament fabrication. Proc IEEE Int Conf Robot Autom 3625–3631. https://doi.org/10.1109/ICRA.2016.7487546

  37. Demir İ, Aliaga DG, Benes B (2018) Near-convex decomposition and layering for efficient 3D printing. Addit Manuf 21:383–394. https://doi.org/10.1016/j.addma.2018.03.008

    Article  Google Scholar 

  38. Wang Y, Gu Z, Song L et al (2017) Speeding up 3D printing using multi-head slicing algorithms. In 2017 5th International Conference on Enterprise Systems (ES). IEEE, pp 99–106

  39. Luo RC, Ma Y (1995) A slicing algorithm for rapid prototyping and manufacturing. In Proceedings of 1995 IEEE International Conference on Robotics and Automation. IEEE, pp 2841–2846

  40. Adnan FA, Romlay FRM, Shafiq M (2018) Real-time slicing algorithm for Stereolithography (STL) CAD model applied in additive manufacturing industry. IOP Conf Ser Mater Sci Eng 342:012016. https://doi.org/10.1088/1757-899X/342/1/012016

    Article  Google Scholar 

  41. King B, Rennie A, Bennett G (2021) An efficient triangle mesh slicing algorithm for all topologies in additive manufacturing. Int J Adv Manuf Technol 112:1023–1033. https://doi.org/10.1007/s00170-020-06396-2

    Article  Google Scholar 

  42. Coupek D, Friedrich J, Battran D, Riedel O (2018) Reduction of support structures and building time by optimized path planning algorithms in multi-axis additive manufacturing. Procedia CIRP 67:221–226. https://doi.org/10.1016/j.procir.2017.12.203

    Article  Google Scholar 

  43. Song X, Pan Y, Chen Y (2015) Development of a low-cost parallel kinematic machine for multidirectional additive manufacturing. J Manuf Sci Eng Trans ASME 137:1–13. https://doi.org/10.1115/1.4028897

    Article  Google Scholar 

  44. Bin Ishak I, Fisher J, Larochelle P (2016) Robot arm platform for additive manufacturing using multi-plane toolpaths. In Volume 5A: 40th Mechanisms and Robotics Conference. American Society of Mechanical Engineers, pp 1–7

  45. Bin Ishak I, Larochelle P (2019) MotoMaker: a robot FDM platform for multi-plane and 3D lattice structure printing. Mech Based Des Struct Mach 47:703–720. https://doi.org/10.1080/15397734.2019.1615943

    Article  Google Scholar 

  46. Ishak I, Larochelle P (2017) Robot arm platform for additive manufacturing: 3D lattice structures. 30th Florida Conference on Recent Advances in Robotics

  47. Biasetto L, Boschetti G, Minto R (2021) Robotic additive printing of cylindrical Auxetic structures. In Mechanisms and Machine Science. pp 394–402

  48. Gao Y, Wu L, Yan DM, Nan L (2019) Near support-free multi-directional 3D printing via global-optimal decomposition. Graph Models 104. https://doi.org/10.1016/j.gmod.2019.101034

  49. Wu C, Dai C, Fang G et al (2020) General support-effective decomposition for multi-directional 3-D printing. IEEE Trans Autom Sci Eng 17:599–610. https://doi.org/10.1109/TASE.2019.2938219

    Article  Google Scholar 

  50. Xu K, Chen L, Tang K (2019) Support-free layered process planning toward 3 + 2-axis additive manufacturing. IEEE Trans Autom Sci Eng 16:838–850. https://doi.org/10.1109/TASE.2018.2867230

    Article  Google Scholar 

  51. Zhang K, Zhang W, Ding X (2020) Multi-axis additive manufacturing process for continuous fibre reinforced composite parts. Procedia CIRP 85:113–117. https://doi.org/10.1016/j.procir.2019.09.022

    Article  Google Scholar 

  52. Zhang GQ, Mondesir W, Martinez C et al (2015) Robotic additive manufacturing along curved surface - a step towards free-form fabrication. In 2015 IEEE International Conference on Robotics and Biomimetics, IEEE-ROBIO 2015. IEEE, pp 721–726

  53. Etienne J, Ray N, Panozzo D et al (2019) Curvislicer: Slightly curved slicing for 3-axis printers. ACM Trans Graph 38. https://doi.org/10.1145/3306346.3323022

  54. Chakraborty D, Reddy BA, Roy Choudhury A (2008) Extruder path generation for curved layer fused deposition modeling. CAD Computer Aided Design 40:235–243. https://doi.org/10.1016/j.cad.2007.10.014

    Article  Google Scholar 

  55. Singamneni S, Roychoudhury A, Diegel O, Huang B (2012) Modeling and evaluation of curved layer fused deposition. J Mater Process Technol 212:27–35. https://doi.org/10.1016/j.jmatprotec.2011.08.001

    Article  Google Scholar 

  56. Huang B, Singamneni S (2015a) A mixed-layer approach combining both flat and curved layer slicing for fused deposition modelling. Proc Ins Mech Eng Part B J Eng Manuf 229:2238–2249. https://doi.org/10.1177/0954405414551076

    Article  Google Scholar 

  57. Jin Y, Du J, He Y, Fu G (2017) Modeling and process planning for curved layer fused deposition. Int J Adv Manuf Technol 91:273–285. https://doi.org/10.1007/s00170-016-9743-5

    Article  Google Scholar 

  58. Bhatt PM, Malhan RK, Gupta SK (2019) Computational foundations for using three degrees of freedom build platforms to enable supportless extrusion-based additive manufacturing. In Volume 1: Additive Manufacturing; Manufacturing Equipment and Systems; Bio and Sustainable Manufacturing. Am Soc Mech Eng

  59. Fry NR, Richardson RC, Boyle JH (2020) Robotic additive manufacturing system for dynamic build orientations. Rapid Prototyp J 26:659–667. https://doi.org/10.1108/RPJ-09-2019-0243

    Article  Google Scholar 

  60. Alkadi F, Lee KC, Bashiri AH, Choi JW (2020) Conformal additive manufacturing using a direct-print process. Addit Manuf 32:100975. https://doi.org/10.1016/j.addma.2019.100975

    Article  Google Scholar 

  61. Yigit IE, Lazoglu I (2019) Helical slicing method for material extrusion-based robotic additive manufacturing. Prog Addit Manuf 4:225–232. https://doi.org/10.1007/s40964-019-00090-w

    Article  Google Scholar 

  62. Yigit IE, Lazoglu I (2020) Spherical slicing method and its application on robotic additive manufacturing. Prog Addit Manuf. https://doi.org/10.1007/s40964-020-00135-5

    Article  Google Scholar 

  63. Chen L, Chung MF, Tian Y et al (2019) Variable-depth curved layer fused deposition modeling of thin-shells. Roboti Comput Integr Manuf 57:422–434. https://doi.org/10.1016/j.rcim.2018.12.016

    Article  Google Scholar 

  64. Tam KMM, Mueller CT (2017) Additive manufacturing along principal stress lines. 3D Printi Addit Manuf 4:63–81. https://doi.org/10.1089/3dp.2017.0001

  65. Doherty S, De Backer W, Bergs AP et al (2016) Selective directional reinforcement of structures for multi-axis additive manufacturing. CAMX Compos Adva Mater Expo

  66. Wulle F, Wolf M, Riedel O, Verl A (2019) Method for load-capable path planning in multi-axis fused deposition modeling. Procedia CIRP 84:335–340. https://doi.org/10.1016/j.procir.2019.04.188

    Article  Google Scholar 

  67. Zhao D, Guo W, Gao F (2020) Research on curved layer fused deposition modeling with a variable extruded filament. J Comput Inf Sci Eng 20:1–12. https://doi.org/10.1115/1.4045637

    Article  Google Scholar 

  68. Khurana JB, Simpson TW, Frecker M (2020) Structurally intelligent 3D layer generation for active-Z printing. Solid Freeform Fabrication 2018: Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2018 2413–2426

  69. Dai C, Wang CCL, Wu C et al (2018) Support-free volume printing by multi-axis motion. ACM Trans Graph 37. https://doi.org/10.1145/3197517.3201342

  70. Bhatt PM, Malhan RK, Rajendran P, Gupta SK (2020) Building free-form thin shell parts using supportless extrusion-based additive manufacturing. Addit Manuf 32:101003. https://doi.org/10.1016/j.addma.2019.101003

    Article  Google Scholar 

  71. Zhao D, Guo W (2020) Mixed-layer adaptive slicing for robotic additive manufacturing (AM) based on decomposing and regrouping. J Intell Manuf 31:985–1002. https://doi.org/10.1007/s10845-019-01490-z

    Article  Google Scholar 

  72. Yuan PF, Meng H, Yu L, Zhang L (2016) Robotic multi-dimensional printing based on structural performance. Robotic Fabrication in Architecture, Art and Design 2016. Springer International Publishing, Cham, pp 92–105

    Chapter  Google Scholar 

  73. Bhatt PM, Kabir AM, Malhan RK et al (2019) A robotic cell for multi-resolution additive manufacturing. Proc IEEE Int Conf Robot Autom 2800–2807. https://doi.org/10.1109/ICRA.2019.8793730

  74. Dolenc A, Mäkelä I (1994) Slicing procedures for layered manufacturing techniques. Comput Aided Des 26:119–126. https://doi.org/10.1016/0010-4485(94)90032-9

    Article  Google Scholar 

  75. Sabourin E (1996) Adaptive high precision exterior, high speed interior

  76. Cormier D, Unnanon K, Sanii E (2000) Specifying non-uniform cusp heights as a potential aid for adaptive slicing. Rapid Prototyp J 6:204–212. https://doi.org/10.1108/13552540010337074

    Article  Google Scholar 

  77. Kulkarni P, Dutta D (1996) An accurate slicing procedure for layered manufacturing. Comput Aided Des 28:683–697. https://doi.org/10.1016/0010-4485(95)00083-6

    Article  Google Scholar 

  78. Hope RL, Roth RN, Jacobs PA (1997) Adaptive slicing with sloping layer surfaces. Rapid Prototyp J 3:89–98. https://doi.org/10.1108/13552549710185662

    Article  Google Scholar 

  79. Mani K, Kulkarni P, Dutta D (1999) Region-based adaptive slicing. Comput Aided Des 31:317–333. https://doi.org/10.1016/S0010-4485(99)00033-0

    Article  MATH  Google Scholar 

  80. Ma W, He P (1999) Adaptive slicing and selective hatching strategy for layered manufacturing. J Mater Proc Technol 89–90:191–197. https://doi.org/10.1016/S0924-0136(99)00043-6

    Article  Google Scholar 

  81. Lee KH, Choi K (2000) Generating optimal slice data for layered manufacturing. Int J Adv Manuf Technol 16:277–284. https://doi.org/10.1007/s001700050157

    Article  Google Scholar 

  82. Pandey PM, Reddy NV, Dhande SG (2003) Real time adaptive slicing for fused deposition modelling

  83. Lin G-H, Hao L, Ning J-G (2010) An adaptive slicing algorithm and its application in 3D finite difference mesh generation. Int J Nonlinear Sci Numer Simul 11:593–600. https://doi.org/10.1515/IJNSNS.2010.11.S1.213

    Article  Google Scholar 

  84. Tata K, Fadel G, Bagchi A, Aziz N (1998) Efficient slicing for layered manufacturing. Rapid Prototyp J 4:151–167. https://doi.org/10.1108/13552549810239003

    Article  Google Scholar 

  85. Rianmora S, Koomsap P (2010) Recommended slicing positions for adaptive direct slicing by image processing technique. Int J Adv Manuf Technol 46:1021–1033. https://doi.org/10.1007/s00170-009-2162-0

    Article  Google Scholar 

  86. Pan X, Chen K, Zhang Z et al (2013) Adaptive slicing algorithm based on STL model. Appl Mech Mater 288:241–245. https://doi.org/10.4028/www.scientific.net/AMM.288.241

    Article  Google Scholar 

  87. Yang Y, Fuh JYH, Loh HT, Wong YS (2003) A Volumetric difference-based adaptive slicing and deposition method for layered manufacturing. J Manuf Sci Eng 125:586–594. https://doi.org/10.1115/1.1581887

    Article  Google Scholar 

  88. Luo RC, Tzou JH (2004) Implementation of a new adaptive slicing algorithm for the rapid prototyping manufacturing dystem. IEEE/ASME Trans Mechatron 9:593–600. https://doi.org/10.1109/TMECH.2004.835332

    Article  Google Scholar 

  89. Wang S, Wang Y, Chen C-S, Zhu X (2013) An adaptive slicing algorithm and data format for functionally graded material objects. Int J Adv Manuf Technol 65:251–258. https://doi.org/10.1007/s00170-012-4164-6

    Article  Google Scholar 

  90. Li Q, Xu XY (2015) Self-adaptive slicing algorithm for 3D printing of FGM components. Mater Res Innov 19:S5-635-S5-641. https://doi.org/10.1179/1432891714Z.0000000001167

  91. Hayasi MT, Asiabanpour B (2013) A new adaptive slicing approach for the fully dense freeform fabrication (FDFF) process. J Intell Manuf 24:683–694. https://doi.org/10.1007/s10845-011-0615-4

    Article  Google Scholar 

  92. Wang W, Chao H, Tong J et al (2015) Saliency-preserving slicing optimization for effective 3D printing. Comput Graph Forum 34:148–160. https://doi.org/10.1111/cgf.12527

    Article  Google Scholar 

  93. Zhang Z, Joshi S (2015) An improved slicing algorithm with efficient contour construction using STL files. Int J Adv Manuf Technol 80:1347–1362. https://doi.org/10.1007/s00170-015-7071-9

    Article  Google Scholar 

  94. Ma X, Lin F, Yao B (2016) Fast parallel algorithm for slicing STL based on pipeline. Chin J Mech Eng 29:549–555. https://doi.org/10.3901/CJME.2016.0309.028

    Article  Google Scholar 

  95. Wang Y, Li W (2019) A slicing algorithm to guarantee non-negative error of additive manufactured parts. Int J Adv Manuf Technol 101:3157–3166. https://doi.org/10.1007/s00170-018-3199-8

    Article  Google Scholar 

  96. Ding D, Pan Z, Cuiuri D et al (2016) Automatic multi-direction slicing algorithms for wire based additive manufacturing. Robot Comput Integr Manuf 37:139–150. https://doi.org/10.1016/j.rcim.2015.09.002

    Article  Google Scholar 

  97. McPherson J, Bliss A, Smith F et al (2020) A slicer and simulator for cooperative 3D printing. Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 870–884

  98. Huang B, Singamneni SB (2015b) Curved layer adaptive slicing (CLAS) for fused deposition modelling. Rapid Prototyp J 21:354–367. https://doi.org/10.1108/RPJ-06-2013-0059

    Article  Google Scholar 

  99. Wang M, Zhang H, Hu Q et al (2019) Research and implementation of a non-supporting 3D printing method based on 5-axis dynamic slice algorithm. Robot Comput Integr Manuf 57:496–505. https://doi.org/10.1016/j.rcim.2019.01.007

    Article  Google Scholar 

  100. Li Y, Tang K, He D, Wang X (2021) Multi-axis support-free printing of freeform parts with lattice infill structures. CAD Comput Aided Des 133:102986. https://doi.org/10.1016/j.cad.2020.102986

    Article  MathSciNet  Google Scholar 

Download references

Funding

This research was supported by the Natural Sciences and Engineering Research Council of Canada – Discovery Grants program (NSERC-DG).

Author information

Authors and Affiliations

Authors

Contributions

Pooyan Nayyeri: Conceptualization; investigation; writing, original draft; writing, review and editing. Kourosh Zareinia: Writing, review and editing. Habiba Bougherara: Supervising; writing, review and editing; funding acquisition.

Corresponding author

Correspondence to Habiba Bougherara.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 189 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayyeri, P., Zareinia, K. & Bougherara, H. Planar and nonplanar slicing algorithms for fused deposition modeling technology: a critical review. Int J Adv Manuf Technol 119, 2785–2810 (2022). https://doi.org/10.1007/s00170-021-08347-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-08347-x

Keywords

Navigation