Skip to main content
Log in

Prediction of molten pool size and vapor depression depth in keyhole melting mode of laser powder bed fusion

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Molten pool geometric characteristics are important factors related to process-induced defects in laser powder bed fusion (LPBF) metal additive manufacturing. Efficient models for rapid predictions of molten pool dimensions will facilitate the study of defects formation in LPBF. In this study, an analytical modeling strategy was developed to predict the molten pool dimensions and vapor depression depth in keyhole melting mode of LPBF. A combined temperature prediction model with closed-form solution was employed to predict the temperature distribution in the part with given process conditions and thermal properties of material. This model consists of a moving point heat source on the top surface of the part and a moving line heat source penetrating into the part. The moving point heat source was used to consider the thermal effects of plasma at the keyhole mouth. The moving line heat source with finite length was employed to consider the laser power absorption by the keyhole walls. The width, depth of molten pool, and vapor depression depth (also called keyhole depth) were determined by comparing the temperature distribution with the melting temperature and boiling point of the material, respectively. To verify the proposed model, the calculated molten pool dimensions under different process conditions were compared with experimental data of Ti6Al4V. The predictions show good agreement with experimental results. The sensitivity analyses of molten pool depth to process conditions were conducted. The computational cost of the proposed model is low because no finite element–based numerical computations are included in this model. The proposed method can provide significant guidance to the optimization of process conditions to avoid the defects related with molten pool size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

source length with normalized enthalpy

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cunningham R, Zhao C, Parab N, Kantzos C, Pauza J, Fezzaa K, Sun T, Rollett AD (2019) Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed x-ray imaging. Science 363(6429):849–852. https://doi.org/10.1126/science.aav4687

    Article  Google Scholar 

  2. Vastola G, Pei QX, Zhang YW (2018) Predictive model for porosity in powder-bed fusion additive manufacturing at high beam energy regime. Addit Manuf 22:817–822. https://doi.org/10.1016/j.addma.2018.05.042

    Article  Google Scholar 

  3. Wang D, Liu Y, Yang Y, Xiao D (2016) Theoretical and experimental study on surface roughness of 316L stainless steel metal parts obtained through selective laser melting. Rapid Prototyp J. https://doi.org/10.1108/RPJ-06-2015-0078

    Article  Google Scholar 

  4. Wang W, Ning J, Liang SY (2021) Prediction of lack-of-fusion porosity in laser powder-bed fusion considering boundary conditions and sensitivity to laser power absorption. Int J Adv Manuf Technol 112(1):61–70. https://doi.org/10.1007/s00170-020-06224-7

    Article  Google Scholar 

  5. Yadroitsev I, Gusarov A, Yadroitsava I, Smurov I (2010) Single track formation in selective laser melting of metal powders. J Mater Proc Technol 210(12):1624–1631. https://doi.org/10.1016/j.jmatprotec.2010.05.010

    Article  Google Scholar 

  6. Bayat M, Thanki A, Mohanty S, Witvrouw A, Yang S, Thorborg J, Tiedje NS, Hattel JH (2019) Keyhole-induced porosities in Laser-based Powder Bed Fusion (L-PBF) of Ti6Al4V: high-fidelity modelling and experimental validation. Addit Manuf 30:100835. https://doi.org/10.1016/j.addma.2019.100835

    Article  Google Scholar 

  7. Patel S, Vlasea M (2020) Melting modes in laser powder bed fusion. Materialia 9:100591. https://doi.org/10.1016/j.mtla.2020.100591

    Article  Google Scholar 

  8. Bertoli US, Wolfer AJ, Matthews MJ, Delplanque JP, Schoenung JM (2017) On the limitations of volumetric energy density as a design parameter for selective laser melting. Mater Des 113:331–340. https://doi.org/10.1016/j.matdes.2016.10.037

    Article  Google Scholar 

  9. Johnson L, Mahmoudi M, Zhang B, Seede R, Huang X, Maier JT, Maier HJ, Karaman I, Elwany A, Arróyave R (2019) Assessing printability maps in additive manufacturing of metal alloys. Acta Mater 176:199–210. https://doi.org/10.1016/j.actamat.2019.07.005

    Article  Google Scholar 

  10. Ning J, Wang W, Ning X, Sievers DE, Garmestani H, Liang SY (2020) Analytical thermal modeling of powder bed metal additive manufacturing considering powder size variation and packing. Materials 13(8):1988. https://doi.org/10.3390/ma13081988

    Article  Google Scholar 

  11. Tang M, Pistorius PC, Beuth JL (2017) Prediction of lack-of-fusion porosity for powder bed fusion. Addit Manuf 14:39–48. https://doi.org/10.1016/j.addma.2016.12.001

    Article  Google Scholar 

  12. Promoppatum P, Yao SC, Pistorius PC, Rollett AD (2017) A comprehensive comparison of the analytical and numerical prediction of the thermal history and solidification microstructure of Inconel 718 products made by laser powder-bed fusion. Engineering 3(5):685–694. https://doi.org/10.1016/J.ENG.2017.05.023

    Article  Google Scholar 

  13. Wang W, Ning J, Liang SY (2021) In-situ distortion prediction in metal additive manufacturing considering boundary conditions. Int J Precis Eng Manuf 22(5):909–917. https://doi.org/10.1007/s12541-021-00496-z

    Article  Google Scholar 

  14. Thampy V, Fong AY, Calta NP, Wang J, Martin AA, Depond PJ, Kiss AM, Guss G, Xing Q, Ott RT, van Buuren A (2020) Subsurface cooling rates and microstructural response during laser based metal additive manufacturing. Sci rep 10(1):1–9. https://doi.org/10.1038/s41598-020-58598-z

    Article  Google Scholar 

  15. Fotovvati B, Wayne SF, Lewis G, Asadi E (2018) A review on melt-pool characteristics in laser welding of metals. Adv Mater Sci Eng 2018. https://doi.org/10.1155/2018/4920718

  16. Tsai MT, Chen YW, Chao CY, Jang JS, Tsai CC, Su YL, Kuo CN (2020) Heat-treatment effects on mechanical properties and microstructure evolution of Ti-6Al-4V alloy fabricated by laser powder bed fusion. J Alloys Compd 816:152615. https://doi.org/10.1016/j.jallcom.2019.152615

    Article  Google Scholar 

  17. Obidigbo C, Tatman EP, Gockel J (2019) Processing parameter and transient effects on melt pool geometry in additive manufacturing of Invar 36. Int J Adv Manuf Technol 104(5):3139–3146. https://doi.org/10.1007/s00170-019-04229-5

    Article  Google Scholar 

  18. Martin AA, Calta NP, Khairallah SA, Wang J, Depond PJ, Fong AY, Thampy V, Guss GM, Kiss AM, Stone KH, Tassone CJ (2019) Dynamics of pore formation during laser powder bed fusion additive manufacturing. Nat Commun 10(1):1. https://doi.org/10.1038/s41467-019-10009-2

    Article  Google Scholar 

  19. Heigel JC, Lane BM (2018) Measurement of the melt pool length during single scan tracks in a commercial laser powder bed fusion process. J Manuf Sci Eng 140(5). https://doi.org/10.1115/1.4037571

  20. Gould B, Wolff S, Parab N, Zhao C, Lorenzo-Martin MC, Fezzaa K, Greco A, Sun T (2021) In situ analysis of laser powder bed fusion using simultaneous high-speed infrared and x-ray imaging. JOM 73(1):201–211. https://doi.org/10.1007/s11837-020-04291-5

    Article  Google Scholar 

  21. Balbaa M, Mekhiel S, Elbestawi M, McIsaac J (2020) On selective laser melting of Inconel 718: densification, surface roughness, and residual stresses. Mater Des 193:108818. https://doi.org/10.1016/j.matdes.2020.108818

    Article  Google Scholar 

  22. Cheng B, Loeber L, Willeck H, Hartel U, Tuffile C (2019) Computational investigation of melt pool process dynamics and pore formation in laser powder bed fusion. J Mater Eng Perform 28(11):6565–6578. https://doi.org/10.1007/s11665-019-04435-y

    Article  Google Scholar 

  23. Shrestha S, Kevin Chou Y (2019) A numerical study on the keyhole formation during laser powder bed fusion process. J Manuf Sci Eng 141(10). https://doi.org/10.1115/1.4044100

  24. Philo AM, Mehraban S, Holmes M, Sillars S, Sutcliffe CJ, Sienz J, Brown SG, Lavery NP (2019) A pragmatic continuum level model for the prediction of the onset of keyholing in laser powder bed fusion. The International J Adv Manuf Technol 101(1):697–714. https://doi.org/10.1007/s00170-018-2770-7

    Article  Google Scholar 

  25. Khairallah SA, Anderson A (2014) Mesoscopic simulation model of selective laser melting of stainless steel powder. J Mater Proc Technol 214(11):2627–2636. https://doi.org/10.1016/j.jmatprotec.2014.06.001

    Article  Google Scholar 

  26. Zhang Z, Huang Y, Kasinathan AR, Shahabad SI, Ali U, Mahmoodkhani Y, Toyserkani E (2019) 3-Dimensional heat transfer modeling for laser powder-bed fusion additive manufacturing with volumetric heat sources based on varied thermal conductivity and absorptivity. Opt Laser Technol 109:297–312. https://doi.org/10.1016/j.optlastec.2018.08.012

    Article  Google Scholar 

  27. Karayagiz K, Elwany A, Tapia G, Franco B, Johnson L, Ma J, Karaman I, Arróyave R (2019) Numerical and experimental analysis of heat distribution in the laser powder bed fusion of Ti-6Al-4V. IISE Transactions 51(2):136–152. https://doi.org/10.1080/24725854.2018.1461964

    Article  Google Scholar 

  28. Ning J, Mirkoohi E, Dong Y, Sievers DE, Garmestani H, Liang SY (2019) Analytical modeling of 3D temperature distribution in selective laser melting of Ti-6Al-4V considering part boundary conditions. J Manuf Proc 44:319–326. https://doi.org/10.1016/j.jmapro.2019.06.013

    Article  Google Scholar 

  29. Mirkoohi E, Seivers DE, Garmestani H, Liang SY (2019) Heat source modeling in selective laser melting. Materials 12(13):2052. https://doi.org/10.3390/ma12132052

    Article  Google Scholar 

  30. Van Elsen M, Baelmans M, Mercelis P, Kruth JP (2007) Solutions for modelling moving heat sources in a semi-infinite medium and applications to laser material processing. International J Heat Mass Trans 50(23–24):4872–4882. https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.044

    Article  MATH  Google Scholar 

  31. Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Clarendon Press

    MATH  Google Scholar 

  32. Panas AJ (2014) Moving heat sources. Encyclopedia Therm Stresses 3215–27. https://doi.org/10.1007/978-94-007-2739-7_397

  33. King WE, Barth HD, Castillo VM, Gallegos GF, Gibbs JW, Hahn DE, Kamath C, Rubenchik AM (2014) Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. J Mater Proc Technol 214(12):2915–2925. https://doi.org/10.1016/j.jmatprotec.2014.06.005

    Article  Google Scholar 

  34. Molina-Giraldo N, Blum P, Zhu K, Bayer P, Fang Z (2011) A moving finite line source model to simulate borehole heat exchangers with groundwater advection. International J Therm Sci 50(12):2506–2513. https://doi.org/10.1016/j.ijthermalsci.2011.06.012

    Article  Google Scholar 

  35. Park HS, Ansari MJ (2018) Numerical investigation and an effective predicting system on the Selective Laser Melting (SLM) process with Ti6Al4V alloy. In IOP Conf Ser: Mater Sci Eng 400(4):042046. IOP Publishing. https://doi.org/10.1088/1757-899X/400/4/042046

  36. Rai R, Elmer JW, Palmer TA, DebRoy T (2007) Heat transfer and fluid flow during keyhole mode laser welding of tantalum, Ti–6Al–4V, 304L stainless steel and vanadium. J Phys D: Appl Phys 40(18):5753. https://doi.org/10.1088/0022-3727/40/18/037

    Article  Google Scholar 

  37. Ye J, Khairallah SA, Rubenchik AM, Crumb MF, Guss G, Belak J, Matthews MJ (2019) Energy coupling mechanisms and scaling behavior associated with laser powder bed fusion additive manufacturing. Adv Eng Mater 21(7):1900185. https://doi.org/10.1002/adem.201900185

    Article  Google Scholar 

  38. Trapp J, Rubenchik AM, Guss G, Matthews MJ (2017) In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing. Appl Mater Today 9:341–349. https://doi.org/10.1016/j.apmt.2017.08.006

    Article  Google Scholar 

  39. Wang YM, Kamath C, Voisin T, Li Z (2018) A processing diagram for high-density Ti-6Al-4V by selective laser melting. Rapid Prototyp J. https://doi.org/10.1108/RPJ-11-2017-0228

    Article  Google Scholar 

  40. Gong H, Rafi K, Gu H, Starr T, Stucker B (2014) Analysis of defect generation in Ti–6Al–4V parts made using powder bed fusion additive manufacturing processes. Addit Manuf 1:87–98. https://doi.org/10.1016/j.addma.2014.08.002

    Article  Google Scholar 

  41. Yang J, Han J, Yu H, Yin J, Gao M, Wang Z, Zeng X (2016) Role of molten pool mode on formability, microstructure and mechanical properties of selective laser melted Ti-6Al-4V alloy. Mater Des 110:558–570. https://doi.org/10.1016/j.matdes.2016.08.036

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenjia Wang or Steven Y. Liang.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Garmestani, H. & Liang, S.Y. Prediction of molten pool size and vapor depression depth in keyhole melting mode of laser powder bed fusion. Int J Adv Manuf Technol 119, 6215–6223 (2022). https://doi.org/10.1007/s00170-021-08295-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-08295-6

Keywords

Navigation