Skip to main content
Log in

Development of clinching process for various materials

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Clinching technology can join thin sheets of various materials, including aluminum alloy, magnesium alloy, steel, titanium alloy, and polymers. Nowadays, with the popularization of the lightweight concept and the application of various sheet materials in manufacturing, clinching technology has highlighted the advantages of being able to adapt to the joining of different sheet materials. With its unique advantages, clinching technology gains wide development space in the field of metal sheet connection. The application of clinching technology in various sheet materials is summarized and analyzed. The clinching process of special materials is also discussed. In addition, some unaddressed issues in the clinching process of special materials are identified in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Availability of data and materials

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

References

  1. Kang JD, Chen YH, Sigler D, Carlson B, Wilkinson DS (2015) Fatigue behavior of dissimilar aluminum alloy spot welds. Procedia Eng 114:149–156. https://doi.org/10.1016/j.proeng.2015.08.053

    Article  Google Scholar 

  2. Thornton P, Krause A, Davies R (1996) Aluminum spot weld. Weld J-Incl Weld Res Suppl 75(3):101s

    Google Scholar 

  3. Tong W, Tao H, Zhang N, Jiang X, Marya MP, Hector LG, Gayden XQ (2005) Deformation and fracture of miniature tensile bars with resistance-spot-weld microstructures. Metall and Mater Trans A 36(10):2651–2669. https://doi.org/10.1007/s11661-005-0263-4

    Article  Google Scholar 

  4. Cui JJ, Wang SL, Yuan W, Li GY (2020) Effects of standoff distance on magnetic pulse welded joints between aluminum and steel elements in automobile body. Automotive Innovation 3: 231-241. https://doi.org/10.1007/s42154-020-00104-2

  5. Ma YW, Niu SZ, Shan H, Li YB, Ma NS (2020)  Impact of stack orientation on self-piercing riveted and friction self-piercing riveted aluminum alloy and magnesium alloy joints. Automotive Innovation 3: 242-249. https://doi.org/10.1007/s42154-020-00108-y

  6. He XC, Gu FS, Ball A (2012) Recent development in finite element analysis of self-piercing riveted joints. Int J Adv Manuf Technol 58(5–8):643–649

    Google Scholar 

  7. Li YB, Wei ZY, Wang ZZ, Li YT (2013) Friction self-piercing riveting of aluminum alloy AA6061-T6 to magnesium alloy AZ31B. Journal of manufacturing science and engineering 135(6). https://doi.org/10.1115/1.4025421

  8. Porcaro R, Hanssen A, Langseth M, Aalberg A (2006) Self-piercing riveting process: an experimental and numerical investigation. J Mater Process Technol 171(1):10–20. https://doi.org/10.1016/j.jmatprotec.2005.05.048

    Article  Google Scholar 

  9. Atzeni E, Ippolito R, Settineri L (2009) Experimental and numerical appraisal of self-piercing riveting. CIRP Ann 58(1):17–20. https://doi.org/10.1016/j.cirp.2009.03.081

    Article  Google Scholar 

  10. Chen C, Zhang H, Ren X, Wu J (2021) Investigation of flat-clinching process using various thicknesses aluminum alloy sheets. Int J Adv Manuf Technol 114(7):2075–2084

    Google Scholar 

  11. Higgins A (2000) Adhesive bonding of aircraft structures. Int J Adhes Adhes 20(5):367–376. https://doi.org/10.1016/S0143-7496(00)00006-3

    Article  Google Scholar 

  12. Kweon JH, Jung JW, Kim TH, Choi JH, Kim DH (2006) Failure of carbon composite-to-aluminum joints with combined mechanical fastening and adhesive bonding. Compos Struct 75(1–4):192–198. https://doi.org/10.1016/j.compstruct.2006.04.013

    Article  Google Scholar 

  13. Vinson JR (1989) Adhesive bonding of polymer composites. Polym Eng Sci 29(19):1325–1331. https://doi.org/10.1002/pen.760291904

    Article  Google Scholar 

  14. Schonhorn H, Hansen RH (1967) Surface treatment of polymers for adhesive bonding. J Appl Polym Sci 11(8):1461–1474

    Google Scholar 

  15. Yi RX, Chen C, Shi C, Li YX, Li HJ, Ma YB (2021) Research advances in residual thermal stress of ceramic/metal brazes. Ceram Int 47:20807-20820. https://doi.org/10.1016/j.ceramint.2021.04.220

    Article  Google Scholar 

  16. Lin Y, Min JY, Teng H, Lin JP, Hu JH, Xu NJ (2020) Flexural performance of steel–FRP composites for automotive applications. Automotive Innovation 3:280-295. https://doi.org/10.1007/s42154-020-00109-x

  17. Abe Y, Kishimoto M, Kato T, Mori K (2009) Joining of hot-dip coated steel sheets by mechanical clinching. IntJ Mater Form 2(1):291–294

    Google Scholar 

  18. Lin PC, Lo S (2016) Development of friction stir clinching process for alclad 2024–T3 aluminum sheets. SAE Int J Mater Manuf 9(3):756–763

    MathSciNet  Google Scholar 

  19. He XC (2017) Clinching for sheet materials. Sci Technol Adv Mater 18(1):381–405

    Google Scholar 

  20. Lee CJ, Kim JY, Lee SK, Ko DC, Kim BM (2010) Design of mechanical clinching tools for joining of aluminium alloy sheets. Mater Des 31(4):1854–1861

    Google Scholar 

  21. Han SL, Wu YW, Gao Y, Zeng QL (2012) Study on clinching of magnesium alloy sheets with different lower die parameters based on DEFORM 2D. In: 2nd International Conference on Electronic & Mechanical Engineering and Information Technology. https://doi.org/10.2991/emeit.2012.274

  22. Han XL, Zhao SD, Liu C, Chen C, Xu F (2017) Optimization of geometrical design of clinching tools in clinching process with extensible dies. Proc Inst Mech Eng C J Mech Eng Sci 231(21):3889–3897

    Google Scholar 

  23. Jiang T, Liu ZX, Wang PC (2015) Quality inspection of clinched joints of steel and aluminum. Int J Adv Manuf Technol 76(5–8):1393–1402

    Google Scholar 

  24. Zhang Y, He XC, Zeng K, Lei L, Gu FS, Ball A (2017) Influence of heat treatment on mechanical properties of clinched joints in titanium alloy sheets. Int J Adv Manuf Technol 91(9–12):3349–3361

    Google Scholar 

  25. He XC, Zhao L, Yang HY, Xing BY, Wang YQ, Deng CJ, Gu FS, Ball A (2014) Investigations of strength and energy absorption of clinched joints. Comput Mater Sci 94:58–65

    Google Scholar 

  26. Mucha J, Witkowski W (2014) The clinching joints strength analysis in the aspects of changes in the forming technology and load conditions. Thin-Walled Struct 82:55–66. https://doi.org/10.1016/j.tws.2014.04.001

    Article  Google Scholar 

  27. Mucha J, Kaščák Lu, Spišák E (2013) The experimental analysis of forming and strength of clinch riveting sheet metal joint made of different materials. Adv Mech Eng 5:848–973. https://doi.org/10.1155/2013/848973

    Article  Google Scholar 

  28. Varis JP, Lepistö J (2003) A simple testing-based procedure and simulation of the clinching process using finite element analysis for establishing clinching parameters. Thin-Walled Struct 41(8):691–709

    Google Scholar 

  29. Lambiase F, Di Ilio A (2013) Finite element analysis of material flow in mechanical clinching with extensible dies. J Mater Eng Perform 22(6):1629–1636

    Google Scholar 

  30. Eshtayeh MM, Hrairi M (2016) Recent and future development of the application of finite element analysis in clinching process. Int J Adv Manuf Technol 84(9):2589–2608

    Google Scholar 

  31. Li YX, Chen C, Yi RY (2021) Recent development of ultrasonic brazing. Int J Adv Manuf Technol 114:27–62

    Google Scholar 

  32. Neugebauer R, Dietrich S, Kraus C (2007) Dieless clinching and dieless rivet-clinching of magnesium. Key Eng Mater 344:693–698

    Google Scholar 

  33. Neugebauer R, Kraus C, Dietrich S (2008) Advances in mechanical joining of magnesium. CIRP Ann 57(1):283–286

    Google Scholar 

  34. Abibe AB, Sônego M, Canto LB, dos Santos JF, Amancio-Filho ST (2020) Process-related changes in polyetherimide joined by friction-based injection clinching joining (F-ICJ). Materials 13(5):1027. https://doi.org/10.3390/ma13051027

    Article  Google Scholar 

  35. Abibe A, Amancio-Filho S, Dos Santos J, Hage E Jr (2011) Development and analysis of a new joining method for polymer-metal hybrid structures. J Thermoplast Compos Mater 24(2):233–249

    Google Scholar 

  36. Abe Y, Mori K, Kato T (2012) Joining of high strength steel and aluminium alloy sheets by mechanical clinching with dies for control of metal flow. J Mater Process Technol 212(4):884–889

    Google Scholar 

  37. Eshtayeh M, Hrairi M, Mohiuddin A (2016) Clinching process for joining dissimilar materials: state of the art. Int J Adv Manuf Technol 82(1–4):179–195

    Google Scholar 

  38. Peng H, Chen C, Zhang HY, Ran XK (2020) Recent development of improved clinching process. Int J Adv Manuf Technol 110:3169–3199

    Google Scholar 

  39. Gerstmann T, Awiszus B (2014) Recent developments in flat-clinching. Comput Mater Sci 81:39–44

    Google Scholar 

  40. Roth R, Clark J, Kelkar A (2001) Automobile bodies: can aluminum be an economical alternative to steel. Jom 53(8):28–32. https://doi.org/10.1007/s11837-001-0131-7

    Article  Google Scholar 

  41. Rosenthal S, Maaß F, Kamaliev M, Hahn M, Gies S, Tekkaya AE (2020) Lightweight in automotive components by forming technology. Automot Innov 3(3):195–209. https://doi.org/10.1007/s42154-020-00103-3

    Article  Google Scholar 

  42. Lee CJ, Lee JM, Ryu HY, Lee KH, Kim BM, Ko DC (2014) Design of hole-clinching process for joining of dissimilar materials–Al6061-T4 alloy with DP780 steel, hot-pressed 22MnB5 steel, and carbon fiber reinforced plastic. J Mater Process Technol 214(10):2169–2178

    Google Scholar 

  43. Wang X, Li C, Ma Y, Shen Z, Sun X, Sha C, Gao S, Li L, Liu H (2016) An experimental study on micro clinching of metal foils with cutting by laser shock forming. Materials 9(7):571. https://doi.org/10.3390/ma12091422

    Article  Google Scholar 

  44. Abe Y, Kato T, Mori K (2007) Joining of aluminium alloy and mild steel sheets using mechanical clinching. Mater Sci Forum 561:1043–1046. https://doi.org/10.4028/www.scientific.net/MSF.561-565.1043

    Article  Google Scholar 

  45. Lee CJ, Kim JY, Lee SK, Ko DC, Kim BM (2010) Parametric study on mechanical clinching process for joining aluminum alloy and high-strength steel sheets. J Mech Sci Technol 24(1):123–126

    Google Scholar 

  46. Calabrese L, Galtieri G, Borsellino C, Di Bella G, Proverbio E (2016) Durability of hybrid clinch-bonded steel/aluminum joints in salt spray environment. Int J Adv Manuf Technol 87(9–12):3137–3147

    Google Scholar 

  47. Jiang T, Liu ZX, Wang PC (2015) Effect of aluminum pre-straining on strength of clinched galvanized SAE1004 steel-to-AA6111-T4 aluminum. J Mater Process Technol 215:193–204

    Google Scholar 

  48. Hörhold R, Müller M, Merklein M, Meschut G (2016) Mechanical properties of an innovative shear-clinching technology for ultra-high-strength steel and aluminium in lightweight car body structures. Weld World 60(3):613–620. https://doi.org/10.1007/s40194-016-0313-0

    Article  Google Scholar 

  49. Babalo V, Fazli A, Soltanpour M (2018) Electro-hydraulic clinching: a novel high speed joining process. J Mater Process Technol 35:559–569

    Google Scholar 

  50. Zhang Y, Wang CM, Shan H, Li Y, Luo Z (2018) High-toughness joining of aluminum alloy 5754 and DQSK steel using hybrid clinching–welding process. J Mater Process Technol 259:33–44. https://doi.org/10.1016/j.jmatprotec.2018.04.021

    Article  Google Scholar 

  51. Liu Z, Ji S, Meng X (2018) Joining of magnesium and aluminum alloys via ultrasonic assisted friction stir welding at low temperature. Int J Adv Manuf Technol 97(9):4127–4136

    Google Scholar 

  52. Musfirah A, Jaharah A (2012) Magnesium and aluminum alloys in automotive industry. J Appl Sci Res 8(9):4865–4875

    Google Scholar 

  53. Miller W, Zhuang L, Bottema J, Wittebrood AJ, De Smet P, Haszler A, Vieregge A (2000) Recent development in aluminium alloys for the automotive industry. Mater Sci Eng, A 280(1):37–49

    Google Scholar 

  54. Bj S, Li H, Peng S, Liao Sh (2013) Effect of heating temperature on clinching joint of AZ31 magnesium sheets. Mater Mech Eng 37(12):27–30

    Google Scholar 

  55. Neugebauer R, Dietrich S, Kraus C (2007) Joining by forming with a flat counter tool-a new way of joining magnesium components. Mater Sci Forum 539:3949–3954. https://doi.org/10.4028/www.scientific.net/MSF.539-543.3949

    Article  Google Scholar 

  56. Wen T, Huang Q, Liu Q, Ou WX, Zhang S (2016) Joining different metallic sheets without protrusion by flat hole clinching process. Int J Adv Manuf Technol 85(1–4):217–225

    Google Scholar 

  57. Faller K, Froes FS (2001) The use of titanium in family automobiles: current trends. JOM 53(4):27–28

    Google Scholar 

  58. Selvakumar M, Ramkumar T, Chandrasekar P (2019) Thermal characterization of titanium–titanium boride composites. J Therm Anal Calorim 136(1):419–424

    Google Scholar 

  59. Sherman A, Sommer C, Froes F (1997) The use of titanium in production automobiles: potential and challenges. JOM 49(5):38–41

    Google Scholar 

  60. Lambiase F, Di Ilio A (2018) Joining aluminum with titanium alloy sheets by mechanical clinching. J Manuf Process 35:457–465

    Google Scholar 

  61. He XC, Zhang Y, Xing BY, Gu FS, Ball A (2015) Mechanical properties of extensible die clinched joints in titanium sheet materials. Mater Des 71:26–35

    Google Scholar 

  62. He XC, Yu TX, Gao AF, Zhang Y (2016) Investigations of join-ability and energy absorption of clinched joints in titanium and aluminum-lithium sheet materials. Mater Trans 57(10):1849–1852

    Google Scholar 

  63. He XC, Zhao DS (2017) Mechanical clinching of titanium and aluminum-lithium sheet materials. Key Eng Mater 744:228–232. https://doi.org/10.4028/www.scientific.net/KEM.744.228

    Article  Google Scholar 

  64. Li JL, He XC, Zhang Y, Liu FL (2015) Xing BY (2015) Experimental investigation on clinching feasibility and mechanical properties of clinched joints for titanium and aluminum alloy sheets. Materials Review 14:22

    Google Scholar 

  65. Gao Y, Liu ZX, Wang PC (2014) Effect of aging on the strength of clinching galvanized SAE1004 steel-to-aluminum AA6111 joints. J Manuf Sci Eng 136(4):041016. https://doi.org/10.1115/1.4027596

    Article  Google Scholar 

  66. Burger G, Gupta A, Jeffrey P, Lloyd D (1995) Microstructural control of aluminum sheet used in automotive applications. Mater Charact 35(1):23–39

    Google Scholar 

  67. Fridlyander I, Sister V, Grushko O, Berstenev V, Sheveleva L, Ivanova L (2002) Aluminum alloys: promising materials in the automotive industry. Met Sci Heat Treat 44(9–10):365–370

    Google Scholar 

  68. Chen C, Zhao SD, Han XL, Zhao XZ, Ishida T (2017) Experimental investigation on the joining of aluminum alloy sheets using improved clinching process. Materials 10(8):887. https://doi.org/10.3390/ma10080887

    Article  Google Scholar 

  69. Chen C, Zhao SD, Han XL, Wang YF, Zhao XZ (2017) Investigation of flat clinching process combined with material forming technology for aluminum alloy. Materials 10(12):1433. https://doi.org/10.3390/ma10121433

    Article  Google Scholar 

  70. Chen C, Fan SQ, Han XL, Zhao SD, Cui MC, Ishida T (2017) Experimental study on the height-reduced joints to increase the cross-tensile strength. Int J Adv Manuf Technol 91(5–8):2655–2662

    Google Scholar 

  71. Chen C, Zhao SD, Cui MC, Han XL, Zhao XZ, Ishida T (2017) Effects of geometrical parameters on the strength and energy absorption of the height-reduced joint. Int J Adv Manuf Technol 90(9–12):3533–3541

    Google Scholar 

  72. Chen C, Zhao SD, Han XL, Cui MC, Fan SQ (2016) Investigation of mechanical behavior of the reshaped joints realized with different reshaping forces. Thin-Walled Struct 107:266–273

    Google Scholar 

  73. Chen C, Zhao SD, Cui MC, Han XL, Fan SQ (2016) Mechanical properties of the two-steps clinched joint with a clinch-rivet. J Mater Process Technol 237:361–370

    Google Scholar 

  74. Chen C, Zhao SD, Han XL, Cui MC, Fan SQ (2017) Investigation of the height-reducing method for clinched joint with AL5052 and AL6061. Int J Adv Manuf Technol 89(5–8):2269–2276

    Google Scholar 

  75. Chen C, Zhao SD, Cui MC, Han XL, Fan SQ, Zhao XZ (2018) Comparative investigation of auxiliary processes for increasing the strength of clinched joints. Proc Inst Mech Eng E: J Process Mech Eng 232(2):165–172. https://doi.org/10.1177/0954408916686998

    Article  Google Scholar 

  76. Shi C, Yi RY, Chen C, Peng H, Ran XK, Zhao SD (2020) Forming mechanism of the repairing process on clinched joint. J Manuf Process 50:329–335

    Google Scholar 

  77. Chen C, Zhang HY, Peng H, Ran XK, Pan Q (2020) Investigation of the restored joint for aluminum alloy. Metals 10(1):97. https://doi.org/10.3390/met10010097

    Article  Google Scholar 

  78. Chen C, Li YX, Zhang HY, Li YB, Pan Q, Han XL (2020) Investigation of a renovating process for failure clinched joint to join thin-walled structures. Thin-Walled Struct 151:106686. https://doi.org/10.1016/j.tws.2020.106686

    Article  Google Scholar 

  79. Chen C, Ran XK, Pan Q, Zhang HY, Yi RX, Han XL (2020) Research on the mechanical properties of repaired clinched joints with different forces. Thin-Walled Struct 152:106752. https://doi.org/10.1016/j.tws.2020.106752

    Article  Google Scholar 

  80. Zhang Y, Shan H, Li Y, Guo J, Luo Z, Ma CY (2017) Joining aluminum alloy 5052 sheets via novel hybrid resistance spot clinching process. Mater Des 118:36–43

    Google Scholar 

  81. Zhang Y, Shan H, Li Y, Zhao CF, Luo Z, Guo J, Ma CY (2017) Effects of the oxide film on the spot joining of aluminum alloy sheets: a comparative study between resistance spot welding and resistance spot clinching. Int J Adv Manuf Technol 92(9–12):4231–4240

    Google Scholar 

  82. Mordike B, Ebert T (2001) Magnesium: properties—applications—potential. Mater Sci Eng, A 302(1):37–45

    Google Scholar 

  83. Jayasathyakawin S, Ravichandran M, Baskar N, Chairman CA, Balasundaram R (2020) Mechanical properties and applications of magnesium alloy–review. Mater Today: Proc 27:909–913. https://doi.org/10.1016/j.matpr.2020.01.255

    Article  Google Scholar 

  84. Lambiase F, Genna S (2018) Experimental analysis of laser assisted joining of Al-Mg aluminium alloy with polyetheretherketone (PEEK). Int J Adhes Adhes 84:265–274. https://doi.org/10.1016/j.ijadhadh.2018.04.004

    Article  Google Scholar 

  85. Hahn O, Horstmann M (2007) Mechanical joining of magnesium components by means of inductive heating-realization and capability. Mater Sci Forum 539:1638–1643. https://doi.org/10.4028/www.scientific.net/MSF.539-543.1638

    Article  Google Scholar 

  86. Hahn O, Tan Y, Schroeder M, Horstmann M (2005) Thermally supported mechanical joining of magnesium components. Mater Sci Forum 539:365–370. https://doi.org/10.4028/www.scientific.net/MSF.488-489.365

    Article  Google Scholar 

  87. Pekguleryuz MO (2012) Current developments in wrought magnesium alloys. Advances in wrought magnesium alloys 3–62. https://doi.org/10.1533/9780857093844.1.3

  88. Luo A, Sachdev A (2012) Applications of magnesium alloys in automotive engineering. Advances in wrought magnesium alloys 12:393–426.https://doi.org/10.1533/9780857093844.3.393

  89. Han SL, Wu YW, Zeng QL (2012) Numerical simulation for heat transfer process of clinching with magnesium alloys. Adv Mater Res 472:1995–1999. https://doi.org/10.4028/www.scientific.net/AMR.472-475.1995

    Article  Google Scholar 

  90. Han SL, Lv QD, Yang L, Zeng QL (2011) Innovation for joining by forming of magnesium alloy based on TRIZ. Adv Mater Res 189:3284–3287. https://doi.org/10.4028/www.scientific.net/AMR.189-193.3284

    Article  Google Scholar 

  91. Peters M, Kumpfert J, Ward CH, Leyens C (2003) Titanium alloys for aerospace applications. Adv Eng Mater 5(6):419–427

    Google Scholar 

  92. Zhang Y, He XC, Liu FL (2015) Study on the property of clinched joint in similar-dissimilar sheets about titanium alloy. Appl Mech Mater 723:888–891. https://doi.org/10.4028/www.scientific.net/AMM.723.888

    Article  Google Scholar 

  93. Lambiase F, Genna S (2017) Laser-assisted direct joining of AISI304 stainless steel with polycarbonate sheets: thermal analysis, mechanical characterization, and bonds morphology. Opt Laser Technol 88:205–214. https://doi.org/10.1016/j.optlastec.2016.09.028

    Article  Google Scholar 

  94. Takita M, Ohashi H (2001) Application of high-strength steel sheets for automobiles in Japan. Metall Res Technol 98(10):899–909. https://doi.org/10.1051/metal:2001137

    Article  Google Scholar 

  95. Balawender T (2016) Low fatigue strength of clinch joints. J Mech Eng Autom 6:277–281

    Google Scholar 

  96. Flodr J, Lehner P, Krejsa M (2020) Experimental and numerical evaluation of clinch connections of thin-walled building structures. Sustainability 12(14):5691

    Google Scholar 

  97. He XC, Liu FL, Xing BY, Yang HY, Wang YQ, Gu FS, Andrew B (2014) Numerical and experimental investigations of extensible die clinching. Int J Adv Manuf Technol 74(9–12):1229–1236

    Google Scholar 

  98. Jónás S, Tisza M (2019) Determination of different parameters to high strength steel clinch joints by FEA. Int J Eng Manag Sci 4(1):341–347

    Google Scholar 

  99. Saberi S, Enzinger N, Vallant R, Cerjak H, Hinterdorfer J, Rauch R (2008) Influence of plastic anisotropy on the mechanical behavior of clinched joint of different coated thin steel sheets. IntJ Mater Form 1(1):273–276

    Google Scholar 

  100. Lennon R, Pedreschi R, Sinha B (1999) Comparative study of some mechanical connections in cold formed steel. Constr Build Mater 13(3):109–116

    Google Scholar 

  101. Davies R, Pedreschi R, Sinha B (1997) Moment-rotation behaviour of groups of press-joins in cold-formed steel structures. Thin-Walled Struct 27(3):203–222

    Google Scholar 

  102. Lei L, He XC, Yu TX, Xing BY (2019) Failure modes of mechanical clinching in metal sheet materials. Thin-Walled Struct 144:106281. https://doi.org/10.1016/j.tws.2019.106281

    Article  Google Scholar 

  103. Pedreschi R, Sinha B (2006) Predicting the shear strength of mechanical clinching in cold-formed steel structures. J Mater Civ Eng 18(3):435–442

    Google Scholar 

  104. Kaczyński P, Bartczak B (2014) The influence of orientation of segmented die on clinch joints mechanical properties. J Mach Eng 14:126–136

    Google Scholar 

  105. Grujicic M, Sellappan V, Arakere G, Ochterbeck J, Seyr N, Obieglo A, Erdmann M, Holzleitner J (2010) Investigation of a polymer metal inter-locking technology for use in load-bearing automotive components. Multidiscip Model Mater Struct 6(1):23–44. https://doi.org/10.1108/15736101011055257

    Article  Google Scholar 

  106. Li R, Ye L, Mai YW (1997) Application of plasma technologies in fibre-reinforced polymer composites: a review of recent developments. Compos A Appl Sci Manuf 28(1):73–86

    Google Scholar 

  107. Lee CJ, Lee SH, Lee JM, Kim BH, Kim BM, Ko DC (2014) Design of hole-clinching process for joining CFRP and aluminum alloy sheet. Int J Precis Eng Manuf 15(6):1151–1157

    Google Scholar 

  108. Abibe A, Amancio-Filho S, Dos Santos J, Hage E Jr (2013) Mechanical and failure behaviour of hybrid polymer–metal staked joints. Mater Des 46:338–347

    Google Scholar 

  109. Gude M, Hufenbach W, Kupfer R, Freund A, Vogel C (2015) Development of novel form-locked joints for textile reinforced thermoplastics and metallic components. J Mater Process Technol 216:140–145

    Google Scholar 

  110. Lambiase F, Ko DC (2016) Feasibility of mechanical clinching for joining aluminum AA6082-T6 and carbon fiber reinforced polymer sheets. Mater Des 107:341–352

    Google Scholar 

  111. Lambiase F (2015) Joinability of different thermoplastic polymers with aluminium AA6082 sheets by mechanical clinching. Int J Adv Manuf Technol 80(9–12):1995–2006

    Google Scholar 

  112. Lambiase F (2015) Mechanical behaviour of polymer–metal hybrid joints produced by clinching using different tools. Mater Des 87:606–618

    Google Scholar 

  113. Lambiase F, Durante M, Di Ilio A (2016) Fast joining of aluminum sheets with glass fiber reinforced polymer (GFRP) by mechanical clinching. J Mater Process Technol 236:241–251

    Google Scholar 

  114. Lambiase F, Ko DC (2017) Two-steps clinching of aluminum and carbon fiber reinforced polymer sheets. Compos Struct 164:180–188

    Google Scholar 

  115. Lambiase F, Di Ilio A (2015) Mechanical clinching of metal–polymer joints. J Mater Process Technol 215:12–19

    Google Scholar 

  116. Grujicic M, Sellappan V, Arakere G, Seyr N, Obieglo A, Erdmann M, Holzleitner J (2009) The potential of a clinch-lock polymer metal hybrid technology for use in load-bearing automotive components. J Mater Eng Perform 18(7):893–902

    Google Scholar 

  117. Lüder S, Härtel S, Binotsch C, Awiszus B (2014) Influence of the moisture content on flat-clinch connection of wood materials and aluminium. J Mater Process Technol 214(10):2069–2074

    Google Scholar 

Download references

Funding

This research work is supported by the National Natural Science Foundation of China (Grant No. 51805416); Young Elite Scientists Sponsorship Program by CAST (Grant No. YESS20200279), Natural Science Foundation of Hunan Province (Grant No. 2020JJ5716); the Project of State Key Laboratory of High Performance Complex Manufacturing, Central South University (Grant No. ZZYJKT2019-01); Huxiang High-Level Talent Gathering Project of HUNAN Province (Grant No. 2019RS1002); Hunan Provincial Natural Science Foundation for Excellent Young Scholars (Grant No. 2021JJ20059); and the Fundamental Research Funds for the Central South Universities of the Central South University (Grant No. 2021zzts0651).

Author information

Authors and Affiliations

Authors

Contributions

Hao Peng and Xiaoqiang Ren analyzed the data; Chao Chen and Hao Peng contributed reagents/materials/analysis tools; Chao Chen, Jinliang Wu, and Hao Peng wrote the paper. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Chao Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, H., Chen, C., Ren, X. et al. Development of clinching process for various materials. Int J Adv Manuf Technol 119, 99–117 (2022). https://doi.org/10.1007/s00170-021-08284-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-08284-9

Keywords

Navigation