Skip to main content

Effect of the interpass temperature on simulated heat-affected zone of gas metal arc welded API 5L X70 pipe joint


Welding costs associated with the laying of pipes for deepwater oil and gas extraction can be reduced using high interpass temperatures (ITs). However, a high IT can decrease the mechanical properties of the heat-affected zone (HAZ) of welded joints. With the use of high strength-toughness steels, this decrease may be an acceptable trade-off. Therefore, it is necessary to evaluate the influence of high ITs on the HAZ. The influence of the IT on the coarse-grain HAZ (CGHAZ) and intercritically reheated coarse-grain HAZ (ICCGHAZ) of an API 5L X70 pipe joint welded by gas metal arc welding was investigated. The welding was numerically simulated using finite element method software. The microstructure of the HAZ was predicted using thermodynamic simulation software. The CGHAZ and ICCGHAZ were also physically simulated and evaluated via optical microscopy and scanning electron microscopy, dilatometry, and Vickers microhardness and Charpy V-notch (CVN) impact tests. The increase in IT led to a decrease in CGHAZ microhardness but did not affect the ICCGHAZ. The CVN energies obtained for all ITs (CGHAZ and ICCGHAZ) were higher than that set by the DNVGL-ST-F101 standard (50 J). These results show that increasing the IT is an interesting and effective method to reduce welding costs. In addition, thermodynamic simulation proved to be a valid method for predicting the phases in the HAZ of API 5L X70 pipe welded joints.

This is a preview of subscription content, access via your institution.

Fig. 1 
Fig. 2 
Fig. 3 
Fig. 4
Fig. 5 
Fig. 6 
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15 

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.


  1. 1.

    Barbosa LHS, Modenesi PJ, Godefroid LB, Arias AR (2019) Fatigue crack growth rates on the weld metal of high heat input submerged arc welding. Int J Fatigue 119:43–51.

    Article  Google Scholar 

  2. 2.

    Layus P, Kah P, Martikainen J, Gezha VV, Bishokov RV (2014) Multi-wire SAW of 640 MPa Arctic shipbuilding steel plates. Int J Adv Manuf Technol 75:771–782.

    Article  Google Scholar 

  3. 3.

    Li L, Han T, Han B (2018) Embrittlement of intercritically reheated coarse grain heat-affected zone of ASTM 4130 steel. Metall. Mater Trans A Phys Metall Mater Sci 49:1254–1263.

    Article  Google Scholar 

  4. 4.

    Dornelas PHG, Farias FWC, Oliveira VHPM, Moraes DO, ZumpanoJúnior P, Payão Filho JC (2020) Influence of welding interpass temperature on Charpy V-notch impact energy of coarse-grain heat-affected zone of AISI 4130 steel pipe. Int J Adv Manuf Technol 108:2197–2211.

    Article  Google Scholar 

  5. 5.

    Arora KS, Pandu SR, Shajan N, Pathak P, Shome M (2018) Microstructure and impact toughness of reheated coarse grain heat affected zones of API X65 and API X80 linepipe steels. Int J Press Vessel Pip 163:36–44.

    Article  Google Scholar 

  6. 6.

    Qi X, Di H, Wang X, Liu Z, Misra RDK (2020) Effect of secondary peak temperature on microstructure and toughness in ICCGHAZ of laser-arc hybrid welded X100 pipeline steel joints. Integr Med Res 9:7838–7849.

    Article  Google Scholar 

  7. 7.

    Shackleton DN (2006) Reducing failure risk in welded components. Riv Ital della Saldatura 58:79–83.

    Article  Google Scholar 

  8. 8.

    Sirin K, Sirin SY, Kaluc E (2016) Influence of the interpass temperature on t8/5 and the mechanical properties of submerged arc welded pipe. J Mater Process Technol 238:152–159.

    Article  Google Scholar 

  9. 9.

    Neves J, Loureiro A (2004) Fracture toughness of welds—effect of brittle zones and strength mismatch. J Mater Process Technol 153:537–543.

    Article  Google Scholar 

  10. 10.

    Muthupandi V, Srinivasan PB, Seshadri SK, Sundaresan S (2003) Effect of weld metal chemistry and heat input on the structure and properties of duplex stainless steel welds. Mater Sci Eng A 358:9–16.

    Article  Google Scholar 

  11. 11.

    Shi Y, Han Z (2008) Effect of weld thermal cycle on microstructure and fracture toughness of simulated heat-affected zone for a 800 MPa grade high strength low alloy steel. J Mater Process Technol 207:30–39.

    Article  Google Scholar 

  12. 12.

    Dornelas PHG, Farias FWC, Oliveira VHPM, Moraes DO, Zumpano Júnior P, Payão Filho JC (2020) FEM-thermodynamic simulation methodology to predict the influence of t8/5 on the coarse grain heat-affected zone of a Cr-Mo low-alloy steel pipe. 60:520–529.

  13. 13.

    Wang XL, Tsai YT, Yang JR, Wang ZQ, Li XC, Shang CJ, Misra RDK (2017) Effect of interpass temperature on the microstructure and mechanical properties of multi-pass weld metal in a 550-MPa-grade offshore engineering steel. Weld World 61:1155–1168.

    Article  Google Scholar 

  14. 14.

    Toyoda M, Mochizuki M (2004) Control of mechanical properties in structural steel welds by numerical simulation of coupling among temperature, microstructure, and macro-mechanics. Sci Technol Adv Mater 5:255–266.

    Article  Google Scholar 

  15. 15.

    Wongpanya P, Boellinghaus T, Lothongkum G, Kannengiesser T (2008) Effects of preheating and interpass temperature on stresses in S 1100 QL multi-pass butt-welds. Weld World 52:79–92.

    Article  Google Scholar 

  16. 16.

    Novotný L, Abreu HFG, Miranda HC, Béreš M (2016) Simulations in multipass welds using low transformation temperature filler material. Sci Technol Weld Join 21:680–687.

    Article  Google Scholar 

  17. 17.

    Dai H, Moat RJ, Withers PJ (2011) Modelling the interpass temperature effect on residual stress in low transformation temperature stainless steel welds. Am Soc Mech Eng Press Vessel Pip Div PVP 6:1451–1458.

    Article  Google Scholar 

  18. 18.

    Zubairuddin M, Albert SK, Vasudevan M, Mahadevan S, Chaudhri V, Suri VK (2016) Thermomechanical analysis of preheat effect on grade P91 steel during GTA welding. Mater Manuf Process 31:366–371.

    Article  Google Scholar 

  19. 19.

    Miettinen J, Koskenniska S, Visuri V (2020) Thermodynamic, kinetic, and microstructure data for modeling solidification of Fe-Al-Mn-Si-C alloys. 51: 2946–2962.

  20. 20.

    Kohler ML, Kunz J, Herzog S, Kaletsch A, Broeckmann C (2021) Microstructure analysis of novel LPBF-processed duplex stainless steels correlated to their mechanical and corrosion properties. 801:140432.

  21. 21.

    Rosenthal D (1941) Mathematical theory of heat distribution during welding and cutting. Weld J 20:220–234

    Google Scholar 

  22. 22.

    Goldak J, Bibby M, Moore J, House R, Patel B (1986) Computer modeling of heat flow in welds. Metall Trans B 17:587–600.

    Article  Google Scholar 

  23. 23.

    Myers PS (1976) Fundamentals of heat flow in welding. Welding Research Council

  24. 24.

    Anca A, Cardona A, Risso J, Fachinotti VD (2011) Finite element modeling of welding processes. Appl Math Model 35:688–707.

    MathSciNet  Article  MATH  Google Scholar 

  25. 25.

    Pozo-Morejón JA, Souza LF, Guerra T, Morales EV, Bott IDS, Cruz-Crespo A, Pérez OR (2018) Ajuste de los calores de entrada que se corresponden con los tiempos de enfriamiento de la ZAT en soldadura GMAW sobre acero dúplex 2205 empleando la simulación por elementos finitos. Sold Insp 23:413–422.

    Article  Google Scholar 

  26. 26.

    Kik T, Górka J (2019) Numerical simulations of laser and hybrid S700MC T-joint welding. Materials 12:516.

    Article  Google Scholar 

  27. 27.

    Geng H, Li J, Xiong J, Lin X (2017) Optimisation of interpass temperature and heat input for wire and arc additive manufacturing 5A06 aluminium alloy. Sci Technol Weld Join 22:472–483.

    Article  Google Scholar 

  28. 28.

    Goldak J, Chakravarti A, Bibby M (1984) A new finite element model for welding heat sources. Metall Trans 15:299–305.

    Article  Google Scholar 

  29. 29.

    Heinze C, Schwenk C, Rethmeier M (2011) Influences of mesh density and transformation behavior on the result quality of numerical calculation of welding induced distortion. Simul Model Pract Theory 19:1847–1859.

    Article  Google Scholar 

  30. 30.

    Harrison PL, Farrar RA (1989) Application of continuous cooling transformation diagrams for welding of steels. Int Mater Rev 34:35–51.

    Article  Google Scholar 

  31. 31.

    Bate SK, Charles R, Warren A (2009) Finite element analysis of a single bead-on-plate specimen using Sysweld. Int J Press Vessels Pip 86:73–78.

    Article  Google Scholar 

  32. 32

    Di XJ, An X, Cheng FJ, Wang DP, Guo XJ, Ue ZK (2016) Effect of martensite–austenite constituent on toughness of simulated inter-critically reheated coarse-grained heat-affected zone in X70 pipeline steel. Sci Technol Weld Join 21:366–373.

    Article  Google Scholar 

  33. 33.

    Zhu Z, Han J, Li H (2015) Effect of alloy design on improving toughness for X70 steel during welding. Mater Des 88:1326–1333.

    Article  Google Scholar 

  34. 34.

    Luo X, Chen X, Wang T, Pan S, Wang Z (2017) Effect of morphologies of martensite–austenite constituents on impact toughness in intercritically reheated coarse-grained heat-affected zone of HSLA steel. Mater Sci Eng A 710:192–199.

    Article  Google Scholar 

  35. 35.

    Yang X, Di X, Liu X, Wang D, Li C (2019) Effects of heat input on microstructure and fracture toughness of simulated coarse-grained heat affected zone for HSLA steels. Mater Charact 155:109818.

    Article  Google Scholar 

  36. 36.

    Zhuangfei W, Minghao SHI, Shuai T, Guodong W (2017) Effect of heat input and M-A constituent on microstructure evolution and mechanical properties of heat affected zone in low carbon steel. J Wuhan Univ Technol Mater Sci Ed 32:1163–1170.

    Article  Google Scholar 

  37. 37.

    Li C, Wang Y, Han T (2011) Microstructure and toughness of coarse grain heat-affected zone of domestic X70 pipeline steel during in-service welding. J Mater Sci 46:727–733.

    Article  Google Scholar 

  38. 38.

    Li CW, Wang Y, Han T (2012) Toughness improvement in coarse grain heat affected zone of X70 pipeline steel by accelerated cooling. Mater Sci Technol 28:92–94.

    Article  Google Scholar 

  39. 39.

    Li C, Wang Y, Chen Y (2011) Influence of peak temperature during in-service welding of API X70 pipeline steels on microstructure and fracture energy of the reheated coarse grain heat-affected zones. J Mater Sci 19:6424–6431.

    Article  Google Scholar 

  40. 40.

    Zhu Z, Kuzmikova L, Li H, Barbaro F (2014) Effect of inter-critically reheating temperature on microstructure and properties of simulated inter-critically reheated coarse grained heat affected zone in X70 steel. Mater Sci Eng A 605:8–13.

    Article  Google Scholar 

  41. 41.

    Mandal M, Poole W, Militzer M, Collins L (2021) Mechanical properties of intercritically annealed X80 line pipe steels. Metall Mater Trans A 52:1336–1352.

    Article  Google Scholar 

  42. 42.

    Kostin VA, Grigorenko GM, Poznyakov VD (2020) Structural transformations of the metal of heat-affected zone of welded joints of high-strength armor steels. J Mater Sci 55:78–83.

    Article  Google Scholar 

  43. 43.

    Ramachandran DC, Moon J, Lee CH, Kim SD, Chung JH, Biro E, Park YD (2021) Role of bainitic microstructures with MA constituent on the toughness of an HSLA steel for seismic resistant structural applications. Mater Sci Eng A 801:140390.

    Article  Google Scholar 

  44. 44.

    Kumar S, Nath SK (2016) Effect of weld thermal cycles on microstructures and mechanical properties in simulated heat-affected zone of a HY 85 steel. Trans Indian Inst Met 70:239–250.

    Article  Google Scholar 

  45. 45.

    Bayraktar E, Kaplan D (2004) Mechanical and metallurgical investigation of martensite–austenite constituents in simulated welding conditions. J Mater Process Technol 154:87–92.

    Article  Google Scholar 

  46. 46.

    Li Y, Crowther DN, Green MJW, Mitchell PS, Baker TN (2001) The effect of vanadium and niobium on the properties and microstructure of the intercritically reheated coarse grained heat-affected zone in low carbon steel. ISIJ Int 41:46–55.

    Article  Google Scholar 

  47. 47.

    Mohammadijoo M, Kenny S, Collins L, Henein H, Ivey DG (2017) Characterization of HAZ of API X70 microalloyed steel welded by cold-wire tandem submerged arc welding. Metall Mater Trans A 48:2247–2259.

    Article  Google Scholar 

  48. 48.

    Dornelas PHG, Payão Filho JC, Oliveira VHPM, Moraes DO, ZumpanoJúnior P (2021) Studying the influence of the interpass temperature on the heat-affected zone of an API 5L X65. Int J Press Vessel 194:104548.

    Article  Google Scholar 

Download references


This work was funded by Petróleo Brasileiro S. A. (Petrobras) and Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP)—grant 2016/00335–0.

Author information




Formal analysis, P.H.G.D., V.H.P.M.O., and J.d.C.P.F.; funding acquisition, D.O.M., P.Z.J., and J.d.C.P.F.; investigation: P.H.G.D.; method: P.H.G.D.; and V.H.P.M.O.; project administration: D.O.M., P.Z.J., and J.d.C.P.F.; supervision, D.O.M., P.Z.J., and J.d.C.P.F.; original draft, P.H.G.D. and V.H.P.M.O.; writing—review and editing, P.H.G.D., J.d.C.P.F., V.H.P.M.O., D.O.M., and P.Z.J.

Corresponding author

Correspondence to Paulo Henrique Grossi Dornelas.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dornelas, P.H.G., Payão Filho, J.d., Moraes e Oliveira, V.H.P. et al. Effect of the interpass temperature on simulated heat-affected zone of gas metal arc welded API 5L X70 pipe joint. Int J Adv Manuf Technol (2021).

Download citation


  • Coarse-grain heat-affected zone
  • Intercritically reheated coarse-grain heat-affected zone
  • Finite element method
  • Thermodynamic simulation
  • Physical simulation