Skip to main content

Damage study of fiber-reinforced composites drilled by abrasive waterjet —challenges and opportunities

Abstract

Owing to their excellent properties such as lightweight and high strength, fiber-reinforced composite materials are widely used as ideal materials for key structural components in extreme service environments (e.g., aviation, aerospace, and nuclear power). However, due to their non-uniformity and anisotropy, they have become typical difficult-to-machine materials, which are prone to cause damage during machining, thereby reducing the service life of the entire component. This review primarily summarizes the damage (including delamination, thermal damage, tool wear, and other processing damages) and suppression strategies of scholars in the process of traditional and non-traditional machining of fiber-reinforced composite materials in the past few years. Besides reviewing the research progress, the limitations of the current research were presented. From this review, it can be seen that traditional and non-traditional (e.g., laser machining) machining methods are difficult to avoid damage. Abrasive waterjet (AWJ) machining is a green and environmentally friendly machining technology. Some key issues are expected to be furtherly solved during the AWJ drilling of fiber-reinforced composite materials with low damage.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    GE Aviation(2021). “GE9X Commercial aircraft engine”. https://www.geaviation.com/commercial/engines/ge9x-commercial-aircraft-engine. Accessed 16 September 2021

  2. 2.

    Rahman M, Ramakrishna S, Prakash JRS, Tan DCG (1999) Machinability study of carbon fiber reinforced composite. J Mater Process Technol 89–90:292–297. https://doi.org/10.1016/S0924-0136(99)00040-0

    Article  Google Scholar 

  3. 3.

    Rajak DK, Pagar DD, Menezes PL, Linul E (2019) Fiber-reinforced polymer composites: manufacturing, properties, and applications. Polymers 11(10):1667. https://doi.org/10.3390/polym11101667

    Article  Google Scholar 

  4. 4.

    Altenbach H, Altenbach J, Kissing W(2004)Classification of composite materials. In: Altenbach H, Altenbach J, Kissing W(ed) Mechanics of composite Structural Elements. Springer, Singapore, 1–14. https://doi.org/10.1007/978-3-662-08589-9_1

  5. 5.

    Çelik A, Lazoglu I, Kara A, Kara F (2015) Investigation on the performance of SiAlON ceramic drills on aerospace grade CFRP composites. J Mater Process Technol 223:39–47. https://doi.org/10.1016/j.jmatprotec.2015.03.040

    Article  Google Scholar 

  6. 6.

    Abrão AM, Faria PE, Rubio JCC, Reis P, Davim JP (2007) Drilling of fiber reinforced plastics: a review. J Mater Process Technol 186(1–3):1–7. https://doi.org/10.1016/j.jmatprotec.2006.11.146

    Article  Google Scholar 

  7. 7.

    Rajakumar IPT, Hariharan P, Vijayaraghavan L (2012) Drilling of carbon fibre reinforced plastic (CFRP) composites – a review. Int J Mater Prod Tec 43(1–4):43–67. https://doi.org/10.1504/IJMPT.2012.047647

    Article  Google Scholar 

  8. 8.

    Panchagnula KK, Palaniyandi K (2018) Drilling on fiber reinforced polymer/nanopolymer composite laminates: a review. J Mater Res Technol 7(2):180–189. https://doi.org/10.1016/j.jmrt.2017.06.003

    Article  Google Scholar 

  9. 9.

    Geier N, Davim JP, Szalay T (2019) Advanced cutting tools and technologies for drilling carbon fibre reinforced polymer (CFRP) composites: a review. Compos Part A 125:105552. https://doi.org/10.1016/j.compositesa.2019.105552

    Article  Google Scholar 

  10. 10.

    Malik K, Ahmad F, Gunister E (2021) Drilling performance of natural fiber reinforced polymer composites: a review. J Nat Fibers. https://doi.org/10.1080/15440478.2020.1870624

    Article  Google Scholar 

  11. 11.

    Kim W, Lim SH, Kang D, Bae S, Yoonon S, Kim SS (2021) Research trends and future perspective in nonconventional machining of fiber-reinforced polymers: a review. Funct Compos Struct 3(2):022001. https://doi.org/10.1088/2631-6331/ac0c28

    Article  Google Scholar 

  12. 12.

    Hale J (2006) Boeing 787 from the ground up. Aero Magazine Boeing 4(24):17–23

    Google Scholar 

  13. 13.

    Kaneda H, Naitoh M, Imai T et al (2010) Cryogenic optical testing of an 800 mm lightweight C/SiC composite mirror mounted on a C/SiC optical bench. Appl Optics 49(20):3941–3948. https://doi.org/10.1364/AO.49.003941

    Article  Google Scholar 

  14. 14.

    General Atomics(2021). Accident Tolerant Fuel. https://www.ga.com/nuclear-fission/accident-tolerant-fuel. Accessed 16 September 2021

  15. 15.

    Yang L, Liu H, Cheng H (2017) Processing-temperature dependent micro- and macro-mechanical properties of SiC fiber reinforced SiC matrix composites. Compos Part B 129:152–167. https://doi.org/10.1016/j.compositesb.2017.07.079

    Article  Google Scholar 

  16. 16.

    Ik B, Ekici E (2010) Experimental investigations of damage analysis in drilling of woven glass fiber-reinforced plastic composites. Int J Adv Manuf Technol 49(9–12):861–869. https://doi.org/10.1007/s00170-009-2440-x

    Article  Google Scholar 

  17. 17.

    Haeger A, Grudenik M, Hoffmann MJ, Knoblauch V (2019) Effect of drilling-induced damage on the open hole flexural fatigue of carbon/epoxy composites. Compos Struct 215:238–248. https://doi.org/10.1016/j.compstruct.2019.02.025

    Article  Google Scholar 

  18. 18.

    Gaitonde VN, Karnik SR, Campos RJ, Esteves CA, Abrão AM, Paulo DJ (2007) Analysis of parametric influence on delamination in high-speed drilling of carbon fiber reinforced plastic composites. J Mater Process Technol 203(1–3):431–438. https://doi.org/10.1016/j.jmatprotec.2007.10.050

    Article  Google Scholar 

  19. 19

    Faraz A, Biermann D, Weinert K (2009) Cutting edge rounding: an innovative tool wear criterion in drilling CFRP composite laminates. Int J Mach Tool Manu 49(15):1185–1196. https://doi.org/10.1016/j.ijmachtools.2009.08.002

    Article  Google Scholar 

  20. 20.

    Yashiro S, Ono R, Ogi K (2019) Effect of machining conditions on the trimming damage in composite laminates induced by out-of-plane shearing. J Mater Process Technol 271:463–475. https://doi.org/10.1016/j.jmatprotec.2019.04.025

    Article  Google Scholar 

  21. 21.

    Davim JP, Reis P (2003) Study of delamination in drilling carbon fiber reinforced plastics (CFRP) using design experiments. Compos Struct 59(4):481–487. https://doi.org/10.1016/S0263-8223(02)00257-X

    Article  Google Scholar 

  22. 22.

    Qiu X, Li P, Li C, Niu Q, Chen A, Ouyang P, Ko TJ (2018) Study on chisel edge drilling behavior and step drill structure on delamination in drilling CFRP. Compos Struct 203:404–413. https://doi.org/10.1016/j.compstruct.2018.07.007

    Article  Google Scholar 

  23. 23.

    Zhang H, Zhu P, Liu Z, Qi S, Zhu Y (2020) Research on prediction method of mechanical properties of open-hole laminated plain woven CFRP composites considering drilling-induced delamination damage. Mech Adv Mater Struc 1-16. https://doi.org/10.1080/15376494.2020.1745969

  24. 24.

    Zhang D, Wang H, Burks AR, Cong W (2020) Delamination in rotary ultrasonic machining of CFRP composites: finite element analysis and experimental implementation. Int J Adv Manuf Technol 107:3847–3858. https://doi.org/10.1007/s00170-020-05310-0

    Article  Google Scholar 

  25. 25.

    Li WY, Huang Y, Chen XH, Zhang GJ, Rong YM, Lu Y (2021) Study on laser drilling induced defects of CFRP plates with different scanning modes based on multi-pass strategy. Opt Laser Technol 144:107400. https://doi.org/10.1016/j.optlastec.2021.107400

    Article  Google Scholar 

  26. 26.

    Persson E, Eriksson I, Zackrisson L (1997) Effects of hole machining defects on strength and fatigue life of composite laminates. Compos Part A 28(2):141–151. https://doi.org/10.1016/S1359-835X(96)00106-6

    Article  Google Scholar 

  27. 27.

    Tsao CC, Hocheng H (2005) Computerized tomography and C-scan for measuring delamination in the drilling of composite materials using various drills. Int J Mach Tool Manu 45(11):1282–1287. https://doi.org/10.1016/j.ijmachtools.2005.01.009

    Article  Google Scholar 

  28. 28.

    Khashaba UA (2004) Delamination in drilling GFR-thermoset composites. Compos Struct 63(3):313–327. https://doi.org/10.1016/S0263-8223(03)00180-6

    Article  Google Scholar 

  29. 29.

    Joshi S, Rawat K, Balan ASS (2018) A novel approach to predict the delamination factor for dry and cryogenic drilling of CFRP. J Mater Process Technol 262:521–531. https://doi.org/10.1016/j.jmatprotec.2018.07.026

    Article  Google Scholar 

  30. 30.

    Tan CL, Azmi AI, Muhammad N (2016) Delamination and surface roughness analyses in drilling hybrid carbon/glass composite. Mater Manuf Process 31(10):1366–1376. https://doi.org/10.1080/10426914.2015.1103864

    Article  Google Scholar 

  31. 31.

    Marques AT, Durão LM, Magalhães AG, Silva JF, Tavares JMRS (2009) Delamination analysis of carbon fibre reinforced laminates: evaluation of a special step drill. Compos Sci Technol 69(14):2376–2382. https://doi.org/10.1016/j.compscitech.2009.01.025

    Article  Google Scholar 

  32. 32.

    Abdul Nasir AA, Azmi AI, Khalil ANM (2015) Measurement and optimisation of residual tensile strength and delamination damage of drilled flax fibre reinforced composites. Measurement 75:298–307. https://doi.org/10.1016/j.measurement.2015.07.046

    Article  Google Scholar 

  33. 33.

    Durão LMP, Gonçalves DJS, Tavares JMRS, Albuquerque VHC, Vieira AA, Marques AT (2009) Drilling tool geometry evaluation for reinforced composite laminates. Compos Struct 92(7):1545–1550. https://doi.org/10.1016/j.compstruct.2009.10.035

    Article  Google Scholar 

  34. 34.

    Zou F, Chen J, An Q, Cai X, Chen M (2020) Influences of clearance angle and point angle on drilling performance of 2D Cf/SiC composites using polycrystalline diamond tools. Ceram Int 46(4):4371–4380. https://doi.org/10.1016/j.ceramint.2019.10.161

    Article  Google Scholar 

  35. 35.

    Geng D, Liu Y, Shao Z, Zhang M, Jiang X, Zhang D (2020) Delamination formation and suppression during rotary ultrasonic elliptical machining of CFRP. Compos Part B 183(C):107698. https://doi.org/10.1016/j.compositesb.2019.107698

    Article  Google Scholar 

  36. 36.

    Xia T, Kaynak Y, Arvin C, Jawahir IS (2016) Cryogenic cooling-induced process performance and surface integrity in drilling CFRP composite material. Int J Adv Manuf Technol 82(1–4):605–616. https://doi.org/10.1007/s00170-015-7284-y

    Article  Google Scholar 

  37. 37.

    Bhatnagar N, Nayak D, Singh I, Chouhan H, Mahajan P (2004) Determination of machining-induced damage characteristics of fiber reinforced plastic composite laminates. Mater Manuf Process 19(6):1009–1023. https://doi.org/10.1081/AMP-200035177

    Article  Google Scholar 

  38. 38.

    Feito N, López-Puente J, Santiuste C, Miguélez MH (2014) Numerical prediction of delamination in CFRP drilling. Compos Struct 108:677–683. https://doi.org/10.1016/j.compstruct.2013.10.014

    Article  Google Scholar 

  39. 39.

    Krishnamoorthy A, Mercy JL, Vineeth KSM, Salugu MK (2015) Delamination analysis of carbon fiber reinforced plastic (CFRP) composite plates by thermo graphic technique. Mater Today: Proc 2(4–5):3132–3139. https://doi.org/10.1016/j.matpr.2015.07.101

    Article  Google Scholar 

  40. 40.

    Zenia S, Ayed LB, Nouari M, Delamézière A (2015) An elastoplastic constitutive damage model to simulate the chip formation process and workpiece subsurface defects when machining CFRP composites. Procedia CIRP 31:100–105. https://doi.org/10.1016/j.procir.2015.03.100

    Article  Google Scholar 

  41. 41.

    Tang W, Chen Y, Yang H, Wang H, Yao Q (2018) Numerical investigation of delamination in drilling of carbon fiber reinforced polymer composites. Appl Compos Mater 25(6):1419–1439. https://doi.org/10.1007/s10443-018-9675-3

    Article  Google Scholar 

  42. 42.

    Shahri MN, Najafabadi MA, Akhlaghi M (2020) On the improvement of analytical delamination model for drilling of laminated composites using Galerkin method. Compos Part B 194:108021. https://doi.org/10.1016/j.compositesb.2020.108021

    Article  Google Scholar 

  43. 43.

    Liu S, Yang T, Liu C (2020) An analytical delamination model of drilling aramid fiber–reinforced plastics by brad drill. Int J Adv Manuf Technol 108:3279–3290. https://doi.org/10.1007/s00170-020-05628-9

    Article  Google Scholar 

  44. 44.

    De Morais WA, D’Almeida JRM, Godefroid LB (2003) Effect of the fiber reinforcement on the low energy impact behavior of fabric reinforced resin matrix composite materials. J Braz Soc Mech Sci 25(4):325–328. https://doi.org/10.1590/S1678-58782003000400002

    Article  Google Scholar 

  45. 45.

    Fahr A, Kandeil AY (1992) Ultrasonic C-scan inspection of composite materials. Eng J Qatar Univ 5:201–222

    Google Scholar 

  46. 46.

    Chadha V, Singari RM (2017) Optimization of cutting parameters on delamination using Taguchi method during drilling of GFRP composites. Proceedings of the International Multi Conference of Engineers and Computer Scientists, Vol II, IMECS 2017, March 15 - 17, 2017, Hong Kong

  47. 47.

    Sorrentino L, Turchetta S, Colella L, Bellini C (2016) Analysis of thermal damage in FRP drilling. Procedia Eng 167:206–215. https://doi.org/10.1016/j.proeng.2016.11.689

    Article  Google Scholar 

  48. 48.

    Zhang H, Huang T, Liu Z, Zhang X, Lu J, Xiao R (2018) High fluence nanosecond laser machining of SiC p/AA2024 composite with high pressure assistant gas. J Manuf Process 31:560–567. https://doi.org/10.1016/j.jmapro.2017.12.020

    Article  Google Scholar 

  49. 49.

    Wang C, Zhang L, Liu Y, Cheng G, Zhang Q, Hua K (2013) Ultra-short pulse laser deep drilling of C/SiC composites in air. Appl Phys A-Mater 111(4):1213–1219. https://doi.org/10.1007/s00339-012-7377-5

    Article  Google Scholar 

  50. 50.

    Zhai Z, Wang W, Mei X, Li M, Cui J, Wang F, Pan A (2018) Effect of the surface microstructure ablated by femtosecond laser on the bonding strength of EBCs for SiC/SiC composites. Opt Commun 424:137–144. https://doi.org/10.1016/j.optcom.2018.04.055

    Article  Google Scholar 

  51. 51.

    Pan CT, Hocheng H (1998) The anisotropic heat-affected zone in the laser grooving of fiber-reinforced composite material. J Mater Process Technol 62(1):54–60. https://doi.org/10.1016/0924-0136(95)02192-2

    Article  Google Scholar 

  52. 52.

    Pan CT, Hocheng H (1998) Prediction of laser-induced thermal damage of fiber mat and fiber MatUD reinforced polymers. J Mater Eng Perform 7(6):751–756. https://doi.org/10.1361/105994998770347314

    Article  Google Scholar 

  53. 53.

    Hocheng H, Pan CT (2007) The effects of cryogenic surroundings on thermal-induced damage in laser grooving of fiber-reinforced plastic. Mach Sci Technol 3(1):77–90. https://doi.org/10.1080/10940349908945684

    Article  Google Scholar 

  54. 54.

    Muramatsu M, Harada Y, Suzuki T, Niino H (2015) Infrared stress measurements of thermal damage to laser-processed carbon fiber reinforced plastics. Compos Part A 68:242–250. https://doi.org/10.1016/j.compositesa.2014.08.033

    Article  Google Scholar 

  55. 55.

    Niino H, Harada Y, Fujisaki A (2017) Thermal damage of carbon fiber reinforced plastic by IR fiber laser irradiation. J Laser Micro/Nanoeng 12(3):235–238. https://doi.org/10.2961/jlmn.2017.03.0011

    Article  Google Scholar 

  56. 56.

    Díaz-Álvarez J, Olmedo A, Santiuste C, Miguélez M (2014) Theoretical estimation of thermal effects in drilling of woven carbon fiber composite. Materials 7(6):4442–4454. https://doi.org/10.3390/ma7064442

    Article  Google Scholar 

  57. 57.

    Li N, Li Y, Zhou J, He Z, Hao X (2015) Drilling delamination and thermal damage of carbon nanotube/carbon fiber reinforced epoxy composites processed by microwave curing. Int J Mach Tool Manu 97:11–17. https://doi.org/10.1016/j.ijmachtools.2015.06.005

    Article  Google Scholar 

  58. 58.

    Liu Y, Wang J, Li W, Wang C, Zhang Q, Yang X, Cheng L (2016) Effect of energy density and feeding speed on micro-holes drilling in SiC/SiC composites by picosecond laser. Int J Adv Manuf Technol 84(9–12):1917–1925. https://doi.org/10.1007/s00170-015-7844-1

    Article  Google Scholar 

  59. 59.

    Azmi AI (2015) Monitoring of tool wear using measured machining forces and neuro-fuzzy modelling approaches during machining of GFRP composites. Adv Eng Softw 82:53–64. https://doi.org/10.1016/j.advengsoft.2014.12.010

    Article  Google Scholar 

  60. 60.

    Wang X, Kwon PY, Sturtevant C, Kim DD-W, Lantrip J (2013) Tool wear of coated drills in drilling CFRP. J Manuf Process 15(1):127–135. https://doi.org/10.1016/j.jmapro.2012.09.019

    Article  Google Scholar 

  61. 61.

    Kuo C, Wang C, Ko S (2018) Wear behaviour of CVD diamond-coated tools in the drilling of woven CFRP composites. Wear 398–399:1–12. https://doi.org/10.1016/j.wear.2017.11.015

    Article  Google Scholar 

  62. 62.

    Xu J, Zhou L, Chen M, Ren F (2019) Experimental study on mechanical drilling of carbon/epoxy composite-Ti6Al4V stacks. Mater Manuf Process 34(7):715–725. https://doi.org/10.1080/10426914.2019.1594275

    Article  Google Scholar 

  63. 63.

    Fernández-Pérez J, Cantero JL, Díaz-Álvarez J, Miguélez MH (2017) Influence of cutting parameters on tool wear and hole quality in composite aerospace components drilling. Compos Struct 178:157–161. https://doi.org/10.1016/j.compstruct.2017.06.043

    Article  Google Scholar 

  64. 64.

    Wang X, Shen X, Zeng C, Sun F (2018) Combined influences of tool shape and as-deposited diamond film on cutting performance of drills for CFRP machining. Surf Coat Technol 347:390–397. https://doi.org/10.1016/j.surfcoat.2018.05.024

    Article  Google Scholar 

  65. 65.

    Karpat Y, Değer B, Bahtiyar O (2012) Drilling thick fabric woven CFRP laminates with double point angle drills. J Mater Process Technol 212(10):2117–2127. https://doi.org/10.1016/j.jmatprotec.2012.05.017

    Article  Google Scholar 

  66. 66.

    Gaugel S, Sripathy P, Haeger A, Meinhard D, Bernthaler T, Lissek F, Kaufeld M, Knoblauch V, Schneider G (2016) A comparative study on tool wear and laminate damage in drilling of carbon-fiber reinforced polymers (CFRP). Compos Struct 155:173–183. https://doi.org/10.1016/j.compstruct.2016.08.004

    Article  Google Scholar 

  67. 67.

    Fernández-Pérez J, Cantero JL, Díaz-Álvarez J, Miguélez MH (2019) Tool wear and induced damage in CFRP drilling with step and double point angle drill bits. Procedia Manuf 41:610–617. https://doi.org/10.1016/j.promfg.2019.09.049

    Article  Google Scholar 

  68. 68.

    Ali YM, Wang J (2010) Impact abrasive machining. In:Jackson MJ, Davim JP (ed) Machining with abrasives. Springer, Boston, 385–419 https://doi.org/10.1007/978-1-4419-7302-3_9

  69. 69.

    Ares PFM, Mata FG, Ponce MB, Gómez JS (2019) Defect analysis and detection of cutting regions in CFRP machining using AWJM. Materials 12(24). https://doi.org/10.3390/ma12244055

  70. 70.

    Hashish M, Whalen J (1993) Precision drilling of ceramic-coated components with abrasive-waterjets. J Eng Gas Turb Power 115(1):148–154. https://doi.org/10.1115/1.2906669

    Article  Google Scholar 

  71. 71.

    Montesano J, Bougherara H, Fawaz Z (2017) Influence of drilling and abrasive water jet induced damage on the performance of carbon fabric/epoxy plates with holes. Compos Struct 163:257–266. https://doi.org/10.1016/j.compstruct.2016.12.007

    Article  Google Scholar 

  72. 72.

    Dhakal HN, Ismail SO, Ojo SO et al (2018) Abrasive water jet drilling of advanced sustainable bio-fibre-reinforced polymer/hybrid composites: a comprehensive analysis of machining-induced damage responses. Int J Adv Manuf Technol 99(9–12):2833–2847. https://doi.org/10.1007/s00170-018-2670-x

    Article  Google Scholar 

  73. 73.

    Ramulu M, Jenkins MG, Guo Z (2001) Abrasive water jet machining mechanisms in continuous-fiber ceramic composites. J Compos Tech Res 23(2):82–91. https://doi.org/10.1520/CTR10916J

    Article  Google Scholar 

  74. 74.

    Ramulu M, Colligan K(2005) Edge finishing and delamination effects induced during abrasive waterjet machining on the compression strength of a graphite/epoxy composite. Proceedings of International Mechanical Engineering Congress and Exposition, IMECE 2005, November 5–11, 2005, Orlando, Florida USA

  75. 75.

    Mayuet PF, Girot F, Lamíkiz A, Fernández-Vidal SR, Salguero J, Marcos M (2015) SOM/SEM based characterization of internal delaminations of CFRP samples machined by AWJM. Procedia Eng 132:693–700. https://doi.org/10.1016/j.proeng.2015.12.549

    Article  Google Scholar 

  76. 76.

    Alberdi A, Artaza T, Suárez A, Suárez A, Girot F (2016) An experimental study on abrasive waterjet cutting of CFRP/Ti6Al4V stacks for drilling operations. Int J Adv Manuf Technol 86(1–4):691–704. https://doi.org/10.1007/s00170-015-8192-x

    Article  Google Scholar 

  77. 77.

    Li MJ, Huang MJ, Yang XJ, Li S, Wei K (2018) Experimental study on hole quality and its impact on tensile behavior following pure and abrasive waterjet cutting of plain woven CFRP laminates. Int J Adv Manuf Technol 99:2481–2490. https://doi.org/10.1007/s00170-018-2589-2

    Article  Google Scholar 

  78. 78.

    Schwartzentruber J, Spelt JK, Papini M (2018) Modelling of delamination due to hydraulic shock when piercing anisotropic carbon-fiber laminates using an abrasive waterjet. Int J Mach Tool Man 132:81–95. https://doi.org/10.1016/j.ijmachtools.2018.05.001

    Article  Google Scholar 

  79. 79.

    Schwartzentruber J, Papini M, Spelt JK (2018) Characterizing and modelling delamination of carbon-fiber epoxy laminates during abrasive waterjet cutting. Compos Part A 112:299–314. https://doi.org/10.1016/j.compositesa.2018.06.014

    Article  Google Scholar 

  80. 80.

    Nyaboro JN, Ahmed MA, El-Hofy H, El-Hofy M (2020) Fluid-structure interaction modeling of the abrasive waterjet drilling of carbon fiber reinforced polymers. J Manuf Process 58:551–562. https://doi.org/10.1016/j.jmapro.2020.08.035

    Article  Google Scholar 

  81. 81.

    Thongkaew K, Wang J, Li W (2019) An investigation of the hole machining processes on woven carbon-fiber reinforced polymers (CFRPs) using abrasive waterjets. Mach Sci Technol 23(1):19–38. https://doi.org/10.1080/10910344.2018.1449217

    Article  Google Scholar 

  82. 82.

    Deepak D, Ashwin PK (2019) Study on abrasive water jet drilling for graphite filled glass/epoxy laminates. J Mech Eng Sci 13(2):5126–5136. https://doi.org/10.15282/jmes.13.2.2019.24.0421

    Article  Google Scholar 

  83. 83.

    Li M, Huang M, Chen Y, Kai W, Yang X (2019) Experimental study on hole characteristics and surface integrity following abrasive waterjet drilling of Ti6Al4V/CFRP hybrid stacks. Int J Adv Manuf Technol 104(9–12):4779–4789. https://doi.org/10.1007/s00170-019-04334-5

    Article  Google Scholar 

  84. 84.

    Kim G, Denos BR, Sterkenburg R (2020) Influence of different piercing methods of abrasive waterjet on delamination of fiber reinforced composite laminate. Compos Struct 240:112065. https://doi.org/10.1016/j.compstruct.2020.112065

    Article  Google Scholar 

  85. 85.

    Altin Karataş M, Motorcu AR, Gökkaya H (2021) Study on delamination factor and surface roughness in abrasive water jet drilling of carbon fiber-reinforced polymer composites with different fiber orientation angles. J Braz Soc Mech Sci 43(1):22. https://doi.org/10.1007/s40430-020-02741-4

    Article  Google Scholar 

  86. 86.

    Hoekstra B, Kolasangiani K, Oguamanam DCD, Bougherara H (2021) Mechanical characterization and damage analysis of carbon/flax hybrid laminates with holes machined by abrasive water jet. J Nat Fibers. https://doi.org/10.1080/15440478.2021.1941491

    Article  Google Scholar 

  87. 87.

    Liu D, Huang C, Wang J, Zhu H, Yao P, Liu Z (2014) Modeling and optimization of operating parameters for abrasive waterjet turning alumina ceramics using response surface methodology combined with Box-Behnken design. Ceram Int 40(6):7899–7908. https://doi.org/10.1016/j.ceramint.2013.12.137

    Article  Google Scholar 

  88. 88.

    Liu D, Huang C, Wang J, Zhu H, Yao P, Liu Z (2013) Study on the effect of standoff distance on processing performance of alumina ceramics in two modes of abrasive waterjet turning patterns. Adv Mater Res 797:21–26. https://doi.org/10.4028/www.scientific.net/AMR.797.21

    Article  Google Scholar 

  89. 89.

    Liu D, Zhu H, Huang C, Wang J, Yao P (2016) Prediction model of depth of penetration for alumina ceramics turned by abrasive waterjet—finite element method and experimental study. Int J Adv Manuf Technol 87(9):2673–2682. https://doi.org/10.1007/s00170-016-8600-x

    Article  Google Scholar 

  90. 90.

    Liu D, Huang C, Zhu H, Wang J, Yao P (2016) Investigation on material response to ultrahigh velocity impact on ceramics by micro particle. Tribol Lett 64(3):1–13. https://doi.org/10.1007/s11249-016-0779-3

    Article  Google Scholar 

  91. 91.

    Liu D, Huang C, Wang J, Zhu H (2021) Material removal mechanisms of ceramics turned by abrasive waterjet (AWJ) using a novel approach. Ceram Int 47(11):15165–15172. https://doi.org/10.1016/j.ceramint.2021.02.076

    Article  Google Scholar 

  92. 92.

    Liu D, Nguyen T, Wang J, Huang C (2020) Mechanisms of enhancing the machining performance in micro abrasive waterjet drilling of hard and brittle materials by vibration assistance. Int J Mach Tool Manu 151:103528. https://doi.org/10.1016/j.ijmachtools.2020.103528

    Article  Google Scholar 

  93. 93.

    Shanmugam DK, Nguyen T, Wang J (2008) A study of delamination on graphite/epoxy composites in abrasive waterjet machining. Compos Part A 39(6):923–929. https://doi.org/10.1016/j.compositesa.2008.04.001

    Article  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (No. 51805296, U1708256), the Postdoctoral innovation project of Shandong Province, China (No. 201702013), and The Fundamental Research Funds of Shandong University (No. 2019GN068) and also supported by the Key Laboratory of High-efficiency and Clean Mechanical Manufacture at Shandong University, Ministry of Education and Young Scholars Future Program of Shandong University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dun Liu.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Liu, D., Zhang, W. et al. Damage study of fiber-reinforced composites drilled by abrasive waterjet —challenges and opportunities. Int J Adv Manuf Technol (2021). https://doi.org/10.1007/s00170-021-08246-1

Download citation

Keywords

  • Fiber-reinforced composites
  • Delamination
  • Thermal damage
  • Tool wear
  • Abrasive waterjet