Skip to main content
Log in

Influence of texture shape and arrangement on nanofluid minimum quantity lubrication turning

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Due to the stringent requirements of carbon emissions, traditional cutting using a large amount of mineral-based metal cutting fluid for lubrication no longer fulfilled the rigorous requirements of policies and standards. Nanofluid minimum quantity lubrication has been proven to be a new process to achieve clean manufacturing. However, due to adhesive contact friction, lubricant droplets cannot effectively penetrate the tool and workpiece interface during continuous turning. Changing the microstructure of the rake face of the tool, such as the micro-texture, may provide a geometric channel for the diffusion of the lubricant. However, the effects of micro-texture geometry and arrangement on the film formation and tribological properties of droplets have not been revealed yet. The spreading behavior of minimum quantity lubrication atomized microdroplet on the textured surface was calculated by hydrodynamic modeling. It was proven that the microchannel can effectively store the lubricating medium atomized by compressed air pneumatics. Furthermore, a comparative experiment was conducted on the influence of the texture arrangement on the cutting performance through the turning experiment. Results show that the microgrooves in the direction perpendicular to the main cutting edge obtained the lowest cutting force. The feed force, radial force, and tangential force were reduced by 13.46%, 16.23%, and 6.34%, respectively. Meanwhile, the texture arranged parallel to the cutting edge and crosswise increased the cutting force. The arrangement of the texture perpendicular to the main cutting edge direction obtained the optimal workpiece surface, the smallest chip curling radius, and the smoothest chip surface. Under the optimized texture arrangement, the anti-wear and anti-friction properties of nanofluids in the cutting area are enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article.

Code availability

Code availability is not applicable to this article.

References

  1. Sun C, Xiu SC, Hong Y, Kong XN, Lu Y (2020) Prediction on residual stress with mechanical-thermal and transformation coupled in DGH. Int J Mech Sci 179:105629. https://doi.org/10.1016/j.ijmecsci.2020.105629

    Article  Google Scholar 

  2. Sun C, Lu Y, Xiu SC, Li QL, Zhang P (2021) Analysis on the removal mechanism of disc grinding based on dynamic thermal-mechanical coupling. Int J Mech Mater Des 176. https://doi.org/10.1007/s10999-10021-09539-10999

  3. Duan ZJ, Li CH, Ding WF, Zhang YB, Yang M, Gao T, Cao HJ, Xu XF, Wang DZ, Mao C, Li HN, Kumar GM, Said Z, Debnath S, Jamil M, Ali HM (2021) Milling force model for aviation aluminum alloy: academic insight and perspective analysis. Chin J Mech Eng 34(1):18. https://doi.org/10.1186/s10033-10021-00536-10039

  4. Shokran A, Dhokia V, Newman ST (2012) Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluids. Int J Mach Tools Manuf 57:83–101. https://doi.org/10.1016/j.ijmachtools.2012.1002.1002

    Article  Google Scholar 

  5. Wang XM, Li CH, Zhang YB, Ding WF, Yang M, Gao T, Cao HJ, Xu XF, Wang DZ, Said Z, Debnath S, Jamil M, Ali HM (2020) Vegetable oil-based nanofluid minimum quantity lubrication turning: academic review and perspectives. J Manuf Process 59:76–97. https://doi.org/10.1016/j.jmapro.2020.1009.1044

    Article  Google Scholar 

  6. Zhang YB, Li HN, Li CH, Huang CZ, Ali HM, Xu XF, Mao C, Ding WF, Cui X, Yang M, Yu TB, Jamil M, Gupta MK, Jia DZ, Said Z (2021) Nano-enhanced biolubricant in sustainable manufacturing: from processability to mechanisms. Friction. https://doi.org/10.1007/s40544-021-0536-y

    Article  Google Scholar 

  7. Abd Rahim E, Dorairaju H (2018) Evaluation of mist flow characteristic and performance in minimum quantity lubrication (MQL) machining. Measurement 123:213–225. https://doi.org/10.1016/j.measurement.2018.1003.1015

    Article  Google Scholar 

  8. Wu XF, Li CH, Zhou ZM, Nie XL, Chen Y, Zhang YN, Cao HJ, Liu B, Zhang NA, Said Z, Debnath S, Jamil M, Ali HM, Sharma S (2021) Circulating purification of cutting fluid: an overview. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-00021-07854-00171

    Article  Google Scholar 

  9. Costello S, Friesen MC, Christiani DC, Eisena EA (2011) Metalworking fluids and malignant melanoma in autoworkers. Epidemiology 22(1):90–97. https://doi.org/10.1097/EDE.1090b1013e3181fce1094b1098

    Article  Google Scholar 

  10. Ejaz A, Babar H, Ali HM, Jamil F, Janjua MM, Fattah IMR, Said Z, Li CH (2021) Concentrated photovoltaics as light harvesters: outlook, recent progress, and challenges. SusTain Energy Techn 46:101199. https://doi.org/10.1016/j.seta.2021.101199

  11. Li BJ, Cao HJ, Yang X, Jafar S, Zeng D (2018) Thermal energy balance control model of motorized spindle system enabling high-speed dry hobbing process. J Manuf Process 35:29–39. https://doi.org/10.1016/j.jmapro.2018.1007.1010

    Article  Google Scholar 

  12. Yang X, Cao HJ, Li BJ, Jafar S, Zhu LB (2018) A thermal energy balance optimization model of cutting space enabling environmentally benign dry hobbing. J Clean Prod 172:2323–2335. https://doi.org/10.1016/j.jclepro.2017.11.2179

    Article  Google Scholar 

  13. Mao C, Cai PH, Hu YL, Zhong YJ, Wei JS, Bi ZM, Jiang YF, Xiao LF, Zhang MJ (2021) Effect of laser-discrete-quenching on bonding properties of electroplated grinding wheel with AISI 1045 steel substrate and nickel bond. Chin J Aeronaut 34(6):79–89. https://doi.org/10.1016/j.cja.2020.1009.0101000-0109361

    Article  Google Scholar 

  14. Mao C, Zhong YJ, Hu YL, Luo YQ, Tang WD, Bi ZM, Lei ZH, Jiang CC, Tang AM (2021) Tensile behaviors of laser-discrete-quenched substrate/nickel coating of electroplated grinding wheel. Int J Pr Eng Man-GT. https://doi.org/10.1007/s40684-40021-00378-40689

    Article  Google Scholar 

  15. Huang BT, Li CH, Zhang YB, Ding WF, Yang M, Yang YY, Zhai H, Xu XF, Wang DZ, Debnath S, Jamil M, Li HN, Ali HM, Gupta MK, Said Z (2021) Advances in fabrication of ceramic corundum abrasives based on sol-gel process. Chin J Aeronaut 34(6):1–17. https://doi.org/10.1016/j.cja.2020.1007.1004

    Article  Google Scholar 

  16. Li HN, Zhao YJ, Cao SY, Chen H, Wu CQ, Qi H, Sun X, Wang HX, Li CH, Liu GY (2021) Controllable generation of 3D textured abrasive tools via multiple-pass laser ablation. J Mater Process Technol 295:117149. https://doi.org/10.1016/j.jmatprotec.2021.117149

  17. Zhang YB, Li CH, Jia DZ, Li BK, Wang YG, Yang M, Hou YL, Zhang XW (2016) Experimental study on the effect of nanoparticle concentration on the lubricating property of nanofluids for MQL grinding of Ni-based alloy. J Mater Process Technol 232:100–115. https://doi.org/10.1016/j.jmatprotec.2016.1001.1031

    Article  Google Scholar 

  18. Gao T, Li CH, Yang M, Zhang YB, Jia DZ, Ding WF, Debnath S, Yu TB, Said Z, Wang J (2021) Mechanics analysis and predictive force models for the single-diamond grain grinding of carbon fiber reinforced polymers using CNT nano-lubricant. J Mater Process Technol 290(9–12):116976. https://doi.org/10.1016/j.jmatprotec.2020.116976

    Article  Google Scholar 

  19. Wang YG, Li CH, Zhang YB, Yang M, Li BK, Dong L, Wang J (2018) Processing characteristics of vegetable oil-based nanofluid mql for grinding different workpiece materials. Int J Pr Eng Man-GT 5(2):327–339. https://doi.org/10.1007/s40684-40018-40035-40684

    Article  Google Scholar 

  20. Liu MZ, Li CH, Zhang YB, An QL, Yang M, Gao T, Mao C, Liu B, Cao HJ, Xu XF, Said Z, Debnath S, Jamil M, Ali HM, Sharma S (2021) Cryogenic minimum quantity lubrication machining: from mechanism to application. Front Mech Eng-Prc. https://doi.org/10.1007/s11465-11021-10654-11462

    Article  Google Scholar 

  21. Guo SM, Li CH, Zhang YB, Wang YG, Li BK, Yang M, Zhang XP, Liu GT (2017) Experimental evaluation of the lubrication performance of mixtures of castor oil with other vegetable oils in MQL grinding of nickel-based alloy. J Clean Prod 140(3):1060–1076. https://doi.org/10.1016/j.jclepro.2016.1010.1073

    Article  Google Scholar 

  22. Sui MH, Li CH, Wu WT, Yang M, Ali HM, Zhang YB, Jia DZ, Hou YL, Li RZ, Cao HJ (2021) Temperature of grinding carbide with castor oil-based MoS2 nanofluid minimum quantity lubrication. J Therm Sci Eng Appl 13(5):051001. https://doi.org/10.1115/1111.4049982

  23. Li BK, Li CH, Zhang YB, Wang YG, Jia DZ, Yang M, Zhang NQ, Wu QD, Han ZG, Sun K (2017) Heat transfer performance of MQL grinding with different nanofluids for Ni-based alloys using vegetable oil. J Clean Prod 154(15):1–11. https://doi.org/10.1016/j.jclepro.2017.1003.1213

    Article  Google Scholar 

  24. Yang M, Li CH, Zhang YB, Jia DZ, Li RZ, Hou YL, Cao HJ (2019) Effect of friction coefficient on chip thickness models in ductile-regime grinding of zirconia ceramics. Int J Adv Manuf Technol 102:2617–2632. https://doi.org/10.1007/s00170-00019-03367-00170

    Article  Google Scholar 

  25. Hayat MA, Ali HM, Janjua MM, Pao W, Li CH, Alizadeh M (2020) Phase change material/heat pipe and copper foam-based heat sinks for thermal management of electronic systems. J Energy Storage 32:101971. https://doi.org/10.1016/j.est.2020.101971

  26. Said Z, Sharma P, Sundar LS, Afzal A, Li CH (2021) Synthesis, stability, thermophysical properties and AI approach for predictive modelling of Fe3O4 coated MWCNT hybrid nanofluids. J Mol Liq 340:117291. https://doi.org/10.1016/j.molliq.2021.117291

  27. Said Z, Sundar LS, Rezk H, Nassef AM, Chakraborty S, Li CH (2021) Thermophysical properties using ND/water nanofluids: an experimental study, ANFIS-based model and optimization. J Mol Liq 330:115659. https://doi.org/10.1016/j.molliq.2021.115659

  28. Cui X, Li CH, Ding WF, Chen Y, Mao C, Xu XF, Liu B, Wang DZ, Li HN, Zhang YB, Said Z, Debnath S, Jamil M, Ali HM, Sharma S (2021) Minimum quantity lubrication machining of aeronautical materials using carbon group nanolubricant: from mechanisms to application. Chin J Aeronaut. https://doi.org/10.1016/j.cja.2021.1008.1011

    Article  Google Scholar 

  29. Yin QG, Li CH, Dong L, Bai XF, Zhang YB, Yang M, Jia DZ, Li RZ, Liu ZQ (2021) Effects of physicochemical properties of different base oils on friction coefficient and surface roughness in MQL milling AISI 1045. Int J Pr Eng Man-GT. https://doi.org/10.1007/s40684-40021-00318-40687

    Article  Google Scholar 

  30. Khanafer K, Vafai K (2021) Analysis of turbulent two-phase flow and heat transfer using nanofluid. Int Commun Heat Mass Transf 124:105219. https://doi.org/10.1016/j.icheatmasstransfer.102021.105219

    Article  Google Scholar 

  31. Abbas AT, Anwar S, Abdelnasser E, Luqman M, Abu Qudeiri JE, Elkaseer A (2021) Effect of different cooling strategies on surface quality and power consumption in finishing end milling of stainless steel 316. Materials 14(4):903. https://doi.org/10.3390/ma14040903

    Article  Google Scholar 

  32. Zhang XP, Li CH, Zhang YB, Wang YG, Li BK, Yang M, Guo SM, Liu GT, Zhang NQ (2017) Lubricating property of MQL grinding of Al2O3/SiC mixed nanofluid with different particle sizes and microtopography analysis by cross-correlation. Precis Eng 47:532–545. https://doi.org/10.1016/j.precisioneng.2016.1009.1016

    Article  Google Scholar 

  33. Gao T, Li CH, Jia DZ, Zhang YB, Yang M, Wang XM, Cao HJ, Li RZ, Ali HM, Xu XF (2020) Surface morphology assessment of CFRP transverse grinding using CNT nanofluid minimum quantity lubrication. J Clean Prod 277:123328. https://doi.org/10.1016/j.jclepro.2020.123328

    Article  Google Scholar 

  34. Yang M, Li CH, Said Z, Zhang YB, Li RZ, Debnath S, Ali HM, Gao T, Long YZ (2021) Semiempirical heat flux model of hard-brittle bone material in ductile microgrinding. J Manuf Process 71:501–514. https://doi.org/10.1016/j.jmapro.2021.1009.1053

    Article  Google Scholar 

  35. Yang M, Li CH, Luo L, Li RZ, Long YZ (2021) Predictive model of convective heat transfer coefficient in bone micro-grinding using nanofluid aerosol cooling. Int Commun Heat Mass Transf 125:105317. https://doi.org/10.1016/j.icheatmasstransfer.2021.105317

    Article  Google Scholar 

  36. Yang M, Li CH, Zhang YB, Wang YG, Li BK, Jia DZ, Hou YL, Li RZ (2017) Research on microscale skull grinding temperature field under different cooling conditions. Appl Therm Eng 126:525–537. https://doi.org/10.1016/j.applthermaleng.2017.1007.1183

    Article  Google Scholar 

  37. Zhang JC, Wu WT, Li CH, Yang M, Zhang YB, Jia DZ, Hou YL, Li RZ, Cao HJ, Ali HM (2021) Convective heat transfer coefficient model under nanofluid minimum quantity lubrication coupled with cryogenic air grinding Ti-6Al-4V. Int J Pr Eng Man-GT 8(4):1113–1135. https://doi.org/10.1007/s40684-40020-00268-40686

    Article  Google Scholar 

  38. Gao T, Zhang XP, Li CH, Zhang YB, Yang M, Jia DZ, Ji HJ, Zhao YJ, Li RZ, Yao P, Zhu LD (2020) Surface morphology evaluation of multi-angle 2D ultrasonic vibration integrated with nanofluid minimum quantity lubrication grinding. J Manuf Process 51:44–61. https://doi.org/10.1016/j.jmapro.2020.1001.1024

    Article  Google Scholar 

  39. Duan ZJ, Li CH, Zhang YB, Dong L, Bai XF, Yang M, Jia DZ, Li RZ, Cao HJ, Xu XF (2021) Milling surface roughness for 7050 aluminum alloy cavity influenced by nozzle position of nanofluid minimum quantity lubrication. Chin J Aeronaut 34(6):33–53. https://doi.org/10.1016/j.cja.2020.1004.1029

    Article  Google Scholar 

  40. Kim DM, Lee I, Kim SK, Kim BH, Park HW (2016) Influence of a micropatterned insert on characteristics of the tool–workpiece interface in a hard turning process. J Mater Process Technol 229:160–171. https://doi.org/10.1016/j.jmatprotec.2015.1009.1018

    Article  Google Scholar 

  41. Mao B, Siddaiah A, Liao Y, Menezes PL (2020) Laser surface texturing and related techniques for enhancing tribological performance of engineering materials: a review. J Manuf Process 53:153–173. https://doi.org/10.1016/j.jmapro.2020.1002.1009

    Article  Google Scholar 

  42. Meng R, Deng JX, Duan R, Liu YY, Zhang GL (2019) Modifying tribological performances of AISI 316 stainless steel surfaces by laser surface texturing and various solid lubricants. Opt Laser Technol 109:401–411. https://doi.org/10.1016/j.optlastec.2018.1008.1020

    Article  Google Scholar 

  43. Darshan C, Jain S, Dogra M, Gupta MK, Mia M (2019) Machinability improvement in Inconel-718 by enhanced tribological and thermal environment using textured tool. J Therm Anal Calorim 138(1):273–285. https://doi.org/10.1007/s10973-10019-08121-y

    Article  Google Scholar 

  44. Zheng KR, Yang FZ, Zhang N, Liu QY, Jiang FL (2020) Study on the cutting performance of micro textured tools on cutting Ti-6Al-4V titanium alloy. Micromachines 11(2):137. https://doi.org/10.3390/mi11020137

    Article  Google Scholar 

  45. Sarma DK, Rajbongshi SK (2020) A study in turning of AISI D2 steel with textured and non-textured coated carbide tool at the flank face. Mater Today Proc 28(2):574–581. https://doi.org/10.1016/j.matpr.2019.1012.1223

    Article  Google Scholar 

  46. Xie J, Luo MJ, Wu KK, Yang LF, Li DH (2013) Experimental study on cutting temperature and cutting force in dry turning of titanium alloy using a non-coated micro-grooved tool. Int J Mach Tools Manuf 73(1):25–36. https://doi.org/10.1016/j.ijmachtools.2013.1005.1006

    Article  Google Scholar 

  47. Ranjan P, Hiremath SS (2019) Role of textured tool in improving machining performance: a review. J Manuf Process 43:47–73. https://doi.org/10.1016/j.jmapro.2019.1004.1011

    Article  Google Scholar 

  48. Wei Y, Kim MR, Lee DW, Park C, Park SS (2017) Effects of micro textured sapphire tool regarding cutting forces in turning operations. Int J Pr Eng Man-GT 4(2):141–147. https://doi.org/10.1007/s40684-40017-40017-y

    Article  Google Scholar 

  49. Mao Y, Yin ZW (2020) Modeling and experiments of cavitation on a pocket-textured surface. P I Mech Eng J-J Eng 234(1):94–103. https://doi.org/10.1177/1350650119855903

    Article  Google Scholar 

  50. Ghaffari A, Hashemabadi SH, Bazmi M (2015) CFD simulation of equilibrium shape and coalescence of ferrofluid droplets subjected to uniform magnetic field. Colloid Surface A 481:186–198. https://doi.org/10.1016/j.colsurfa.2015.1004.1038

    Article  Google Scholar 

  51. Jiao YL, Liu XJ, Liu K (2016) Mechanical analysis of a droplet spreading on the discrete textured surfaces. J Theor App Mech-POL 48(2):353–360. https://doi.org/10.6052/0459-1879-6015-6257

    Article  Google Scholar 

  52. Zhang YB, Li CH, Yang M, Jia DZ, Wang YG, Li BK, Hou YL, Zhang NQ, Wu QD (2016) Experimental evaluation of cooling performance by friction coefficient and specific friction energy in nanofluid minimum quantity lubrication grinding with different types of vegetable oil. J Clean Prod 139:685–705. https://doi.org/10.1016/j.jclepro.2016.1008.1073

    Article  Google Scholar 

  53. Bai XF, Li CH, Dong L, Yin QA (2019) Experimental evaluation of the lubrication performances of different nanofluids for minimum quantity lubrication (MQL) in milling Ti-6Al-4V. Int J Adv Manuf Technol 101(9–12):2621–2632. https://doi.org/10.1007/s00170-00018-03100-00179

    Article  Google Scholar 

  54. Jia DZ, Li CH, Zhang YB, Yang M, Zhang XP, Li RZ, Ji HJ (2019) Experimental evaluation of surface topographies of NMQL grinding ZrO2 ceramics combining multiangle ultrasonic vibration. Int J Adv Manuf Technol 100(1–4):457–473. https://doi.org/10.1007/s00170-00018-02718-y

    Article  Google Scholar 

  55. Wang YG, Li CH, Zhang YB, Li BK, Yang M, Zhang XP, Guo SM, Liu GT (2016) Experimental evaluation of the lubrication properties of the wheel/workpiece interface in MQL grinding with different nanofluids. Tribol Int 99:198–210. https://doi.org/10.1016/j.triboint.2016.1003.1023

    Article  Google Scholar 

  56. Gao T, Li CH, Zhang YB, Yang M, Jia DZ, Jin T, Hou YL, Li RZ (2019) Dispersing mechanism and tribological performance of vegetable oil-based CNT nanofluids with different surfactants. Tribol Int 131:51–63. https://doi.org/10.1016/j.triboint.2018.1010.1025

    Article  Google Scholar 

  57. Piao ZP, Zhang KD, Zhou CC, Xi ZJ, Wang A, Feng F (2020) Coupling effect of micro-textures and nanofluids on tribological properties of cemented carbide tools materials. Tool Engineering 54(4):6–13. https://doi.org/10.3969/j.issn.1000-7008.2020.3904.3001

    Article  Google Scholar 

  58. Lv M, Guo JY (2010) Simulation for effects of tool-chip friction on chip flow characteristics in oblique cutting. ACTA Armamentar 31(11):1491–1497

    Google Scholar 

  59. Godlevski VA, Volkov AV, Latyshev VN, Maurin LN (2010) Description of the lubricating action of the tribo-active components of cutting fluids. Lubr Sci 11(1):51–62. https://doi.org/10.1002/ls.3010110106

    Article  Google Scholar 

Download references

Funding

This study was financially supported by the National Key Research and Development Plan (Grant No. 2020YFB2010500), the National Natural Science Foundation of China (Grant Nos. 51975305 and 51905289), the Major Research Project of Shandong Province (Grant Nos. 2019GGX104040 and 2019GSF108236), the Major Science and Technology Innovation Engineering Projects of Shandong Province (Grant No. 2019JZZY020111), and the Natural Science Foundation of Shandong Province (Grant No. ZR2020KE027).

Author information

Authors and Affiliations

Authors

Contributions

Xiaoming Wang: investigation, writing (original draft), and writing (review and editing); Changhe Li: technical and material support; instructional support, and writing (review); Yanbin Zhang: formal analysis, validation, and writing (review and editing); Zafar Said: statistical analysis, validation; Sujan Debnath: formal analysis, validation; Shubham Sharma: formal analysis, validation; Min Yang: modify paper, formal analysis; Teng Gao: collect and organize data.

Corresponding author

Correspondence to Changhe Li.

Ethics declarations

Consent to participate

Consent to participate is not applicable to this article.

Consent for publication

The authors declare that they participated in this paper willingly and the authors declare to consent to the publication of this paper.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Li, C., Zhang, Y. et al. Influence of texture shape and arrangement on nanofluid minimum quantity lubrication turning. Int J Adv Manuf Technol 119, 631–646 (2022). https://doi.org/10.1007/s00170-021-08235-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-08235-4

Keywords

Navigation