Skip to main content
Log in

Dissimilar FSW of AA2024 and AA7075: effect of materials positioning and tool deviation value on microstructure, global and local mechanical behavior

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this work, the effect of material location and tool deviation on global and local mechanical behavior of dissimilar AA2024/AA7075 friction stir weld joints was investigated. The results showed that increasing the tool deviation value up to 1 mm towards the soft material, fixed in the advancing side, improved the material mixing quality and enhanced the grain refinement in the stir zone. It was found that the highest ultimate tensile strength was obtained when the AA7075 alloy was fixed in the retreating side for 1-mm tool deviation towards the AA2024 alloy. Above this deviation value, a gradual decrease of the global mechanical properties of the weld joints was noticed. The digital image correlation (DIC) technique coupled to tensile testing revealed an improvement of local strain in the stir zone as well as the heat-affected zones of the dissimilar joints when the AA2024 alloy was positioned in the advancing side.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article. The raw data that support the findings of this study are available upon a reasonable request.

Code availability

Not applicable.

References

  1. DebRoy T, Bhadeshia HKDH (2010) Friction stir welding of dissimilar alloys—a perspective. Sci Technol Weld Join 15:266–270. https://doi.org/10.1179/174329310X12726496072400

    Article  Google Scholar 

  2. Murr LE (2010) A review of FSW research on dissimilar metal and alloy systems. J Mater Eng Perform 19:1071–1089. https://doi.org/10.1007/s11665-010-9598-0

    Article  Google Scholar 

  3. Guo J, Gougeon P, Chen XG (2012) Microstructure evolution and mechanical properties of dissimilar friction stir welded joints between AA1100-B 4C MMC and AA6063 alloy. Mater Sci Eng A 553:149–156. https://doi.org/10.1016/j.msea.2012.06.004

    Article  Google Scholar 

  4. Çam G, Koçak M (1998) Progress in joining of advanced materials. Int Mater Rev 43:1–44. https://doi.org/10.1179/imr.1998.43.1.1

    Article  Google Scholar 

  5. Boucherit A, Abdi S, Aissani M, Mehdi B, Abib K, Badji R (2020) Weldability, microstructure, and residual stress in Al/Cu and Cu/Al friction stir spot weld joints with Zn interlayer. Int J Adv Manuf Technol 111:1553–1569. https://doi.org/10.1007/s00170-020-06202-z

    Article  Google Scholar 

  6. Safarbali B, Shamanian M, Eslami A (2018) Effect of post-weld heat treatment on joint properties of dissimilar friction stir welded 2024–T4 and 7075–T6 aluminum alloys. Trans Nonferrous Met Soc China (English Ed) 28:1287–1297. https://doi.org/10.1016/S1003-6326(18)64766-1

    Article  Google Scholar 

  7. Dubourg L, Merati A, Jahazi M (2010) Process optimisation and mechanical properties of friction stir lap welds of 7075–T6 stringers on 2024–T3 skin. Mater Des 31:3324–3330. https://doi.org/10.1016/j.matdes.2010.02.002

    Article  Google Scholar 

  8. Amancio-Filho ST, Sheikhi S, dos Santos JF, Bolfarini C (2008) Preliminary study on the microstructure and mechanical properties of dissimilar friction stir welds in aircraft aluminium alloys 2024–T351 and 6056–T4. J Mater Process Technol 206:132–142. https://doi.org/10.1016/j.jmatprotec.2007.12.008

    Article  Google Scholar 

  9. Da Silva AAM, Aldanondo E, Alvarez P, Lizarralde A, Echeverria A (2010) Mechanical and microstructural characterisation of dissimilar friction stir welded AA2024-T3 and AA7075-T6 aluminium alloys. Mater Sci Forum 638–642:1221–1226. https://doi.org/10.4028/www.scientific.net/MSF.638-642.1221

    Article  Google Scholar 

  10. Heidarzadeh A, Khodaverdizadeh H, Mahmoudi A, Nazari E (2012) Tensile behavior of friction stir welded AA 6061–T4 aluminum alloy joints. Mater Des 37:166–173. https://doi.org/10.1016/j.matdes.2011.12.022

    Article  Google Scholar 

  11. Cavaliere P, Nobile R, Panella FW, Squillace A (2006) Mechanical and microstructural behaviour of 2024–7075 aluminium alloy sheets joined by friction stir welding. Int J Mach Tools Manuf 46:588–594. https://doi.org/10.1016/j.ijmachtools.2005.07.010

    Article  Google Scholar 

  12. Ye Z, Huang J, Gao W, Zhang Y, Cheng Z, Chen S, Yang J (2017) Microstructure and mechanical properties of 5052 aluminum alloy/mild steel butt joint achieved by MIG-TIG double-sided arc welding-brazing. Mater Des 123:69–79. https://doi.org/10.1016/j.matdes.2017.03.039

    Article  Google Scholar 

  13. Zhang C, Cao Y, Huang G, Zeng Q, Zhu Y, Huang X, Li N, Liu Q (2020) Influence of tool rotational speed on local microstructure, mechanical and corrosion behavior of dissimilar AA2024/7075 joints fabricated by friction stir welding. J Manuf Process 49:214–226. https://doi.org/10.1016/j.jmapro.2019.11.031

    Article  Google Scholar 

  14. Cavaliere P, Panella F (2008) Effect of tool position on the fatigue properties of dissimilar 2024–7075 sheets joined by friction stir welding. J Mater Process Technol 206:249–255. https://doi.org/10.1016/j.jmatprotec.2007.12.036

    Article  Google Scholar 

  15. Paidar M, Ghavamian S, Ojo OO, Khorram A, Shahbaz A (2019) Modified friction stir clinching of dissimilar AA2024-T3 to AA7075-T6: effect of tool rotational speed and penetration depth. J Manuf Process 47:157–171. https://doi.org/10.1016/j.jmapro.2019.09.028

    Article  Google Scholar 

  16. Song Y, Yang X, Cui L, Hou X, Shen Z, Xu Y (2014) Defect features and mechanical properties of friction stir lap welded dissimilar AA2024-AA7075 aluminum alloy sheets. Mater Des 55:9–18. https://doi.org/10.1016/j.matdes.2013.09.062

    Article  Google Scholar 

  17. Zhang C, Huang G, Cao Y, Zhu Y, Liu Q (2019) On the microstructure and mechanical properties of similar and dissimilar AA7075 and AA2024 friction stir welding joints: Effect of rotational speed. J Manuf Process 37:470–487. https://doi.org/10.1016/j.jmapro.2018.12.014

    Article  Google Scholar 

  18. Bahemmat P, Haghpanahi M, Givi MKB, Seighalani KR (2012) Study on dissimilar friction stir butt welding of AA7075-O and AA2024-T4 considering the manufacturing limitation. Int J Adv Manuf Technol 59:939–953. https://doi.org/10.1007/s00170-011-3547-4

    Article  Google Scholar 

  19. Abd El-Hafez H, El-Megharbel A (2018) Friction stir welding of dissimilar aluminum alloys. World J Eng Technol 06:408–419. https://doi.org/10.4236/wjet.2018.62025

    Article  Google Scholar 

  20. Guo JF, Chen HC, Sun CN, Bi G, Sun Z, Wei J (2014) Friction stir welding of dissimilar materials between AA6061 and AA7075 Al alloys effects of process parameters. Mater Des 56:185–192. https://doi.org/10.1016/j.matdes.2013.10.082

    Article  Google Scholar 

  21. Khodir SA, Shibayanagi T (2008) Friction stir welding of dissimilar AA2024 and AA7075 aluminum alloys. Mater Sci Eng B Solid-State Mater Adv Technol 148:82–87. https://doi.org/10.1016/j.mseb.2007.09.024

    Article  Google Scholar 

  22. Khan NZ, Siddiquee AN, Khan ZA, Mukhopadhyay AK (2017) Mechanical and microstructural behavior of friction stir welded similar and dissimilar sheets of AA2219 and AA7475 aluminium alloys. J Alloys Compd 695:2902–2908. https://doi.org/10.1016/j.jallcom.2016.11.389

    Article  Google Scholar 

  23. Widener C, Tweedy B, Burford D (2006) Effect of fit-up tolerances on the strength of friction stir welds. 47th AIAA/ASME/ASCE/AHS/ASC Struct Struct Dyn Mater Conf

  24. Guillo M, Dubourg L (2016) Impact & improvement of tool deviation in friction stir welding: weld quality & real-time compensation on an industrial robot. Robot Comput Integr Manuf 39:22–31. https://doi.org/10.1016/j.rcim.2015.11.001

    Article  Google Scholar 

  25. Cole EG, Fehrenbacher A, Shultz EF, Smith CB, Ferrier NJ, Zinn MR, Pfefferkorn FE (2012) Stability of the friction stir welding process in presence of workpiece mating variations. Int J Adv Manuf Technol 63:583–593. https://doi.org/10.1007/s00170-012-3946-1

    Article  Google Scholar 

  26. Tingey C, Galloway A, Toumpis A, Cater S (2015) Effect of tool centreline deviation on the mechanical properties of friction stir welded DH36 steel. Mater Des 65:896–906. https://doi.org/10.1016/j.matdes.2014.10.017

    Article  Google Scholar 

  27. Khodir SA, Shibayanagi T (2007) Microstructure and mechanical properties of friction stir welded dissimilar aluminum joints of AA2024-T3 and AA7075-T6. Mater Trans 48:1928–1937. https://doi.org/10.2320/matertrans.MRA2007042

    Article  Google Scholar 

  28. Jomaa W, Mechri O, Lévesque J, Songmene V, Bocher P, Gakwaya A (2017) Finite element simulation and analysis of serrated chip formation during high–speed machining of AA7075–T651 alloy. J Manuf Process 26:446–458. https://doi.org/10.1016/j.jmapro.2017.02.015

    Article  Google Scholar 

  29. Jata KV, Sankaran KK, Ruschau JJ (2000) Friction-stir welding effects on microstructure and fatigue of aluminum alloy 7050–T7451. Metall Mater Trans A Phys Metall Mater Sci 31:2181–2192. https://doi.org/10.1007/s11661-000-0136-9

    Article  Google Scholar 

  30. Hou W, Ahmad Shah LH, Huang G, Shen Y, Gerlich A (2020) The role of tool offset on the microstructure and mechanical properties of Al/Cu friction stir welded joints. J Alloys Compd 825:154045. https://doi.org/10.1016/j.jallcom.2020.154045

    Article  Google Scholar 

  31. Zhang Z, Wu Q (2015) Numerical studies of tool diameter on strain rates, temperature rises and grain sizes in friction stir welding. J Mech Sci Technol 29:4121–4128. https://doi.org/10.1007/s12206-015-0906-3

    Article  Google Scholar 

  32. Hasan MM, Ishak M, Rejab MRM (2017) Effect of backing material and clamping system on the tensile strength of dissimilar AA7075-AA2024 friction stir welds. Int J Adv Manuf Technol 91:3991–4007. https://doi.org/10.1007/s00170-017-0033-7

    Article  Google Scholar 

  33. Khan NZ, Siddiquee AN, Khan ZA, Shihab SK (2015) Investigations on tunneling and kissing bond defects in FSW joints for dissimilar aluminum alloys. J Alloys Compd 648:360–367. https://doi.org/10.1016/j.jallcom.2015.06.246

    Article  Google Scholar 

  34. Hasan MM, Ishak M, Rejab MRM (2018) Effect of pin tool flute radius on the material flow and tensile properties of dissimilar friction stir welded aluminum alloys. Int J Adv Manuf Technol 98:2747–2758. https://doi.org/10.1007/s00170-018-2426-7

    Article  Google Scholar 

  35. Ghorbanzade T, Soltanipour A, Dehghani K, Chabok A (2016) Microstructural evolutions and mechanical properties of friction stir welded AA2024-3. Proc Inst Mech Eng Part L J Mater Des Appl 230:75–87. https://doi.org/10.1177/1464420714545369

    Article  Google Scholar 

  36. Carlone P, Palazzo GS (2013) Influence of process parameters on microstructure and mechanical properties in AA2024-T3 friction stir welding. Metallogr Microstruct Anal 2:213–222. https://doi.org/10.1007/s13632-013-0078-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Idir Hadji.

Ethics declarations

Ethics approval

This study complies with the ethical standards set out by Springer. All the authors read and approved the final manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadji, I., Badji, R., Gaceb, M. et al. Dissimilar FSW of AA2024 and AA7075: effect of materials positioning and tool deviation value on microstructure, global and local mechanical behavior. Int J Adv Manuf Technol 118, 2391–2403 (2022). https://doi.org/10.1007/s00170-021-08120-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-08120-0

Keywords

Navigation