Skip to main content

Advertisement

Log in

Analytical modeling and prediction of cutting forces in orthogonal turning: a review

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The knowledge of cutting forces in various machining processes is of great importance not only for the designer-manufacturer of machine tools, but also for the user, since the cutting force governs cutting heat generation, tool life, and machining accuracy. In this regard, lots of investigations have been conducted on the cutting forces by developing different types of prediction models to make appropriate estimations, which are grouped into the analytical, empirical, and numerical methods. This paper conducts a survey on the development of analytical cutting force models for the orthogonal turning/cutting process. The analytical force models developed from the shear theory are detailed reviewed, and other analytical modeling methods for specially-designed tools, advanced materials, and special kinematics are also presented. The modeling laws and key challenges are also discussed for future researches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

Availability of data and material

All data, models, and code generated or used during the study appear in the submitted article

Abbreviations

\({\alpha }_{o}\) :

Nominal rake angle

\({\alpha }_{e}\) :

Effective rake angle

\(\beta\) :

Friction angle at tool-chip interface

\(\varphi\) :

Shear angle

\(\theta\) :

Angle between the resultant force and shear plane

A 0 :

Cross-sectional area of the undeformed chip

A s :

Area of the shear plane

A c :

Cross-sectional area of the chip

\(h\) :

Nominal depth of cut

\(w\) :

Width of cut

w chip :

Width of chip

\({r}_{e}\) :

Cutting edge radius

r t :

Tool nose radius

\({t}_{c}\) :

Chip thickness

\({t}_{u}\) :

Uncut chip thickness

\({h}_{\mathrm{min}}\) :

Minimum cutting depth

\({r}_{c}\) :

Cutting ratio

\({F}_{f}\) :

Friction force

\({F}_{n}\) :

Normal force

\({F}_{c}\) :

Main cutting force

\({F}_{t}\) :

Thrust force

\({F}_{x}, {F}_{y}, {F}_{z}\) :

Cutting forces in x, y and z-direction of the machine coordinate system, respectively

\({F}_{R}\) :

Resultant cutting force

\({F}_{s}\) :

Shear force along the shear plane

\({F}_{p}\) :

Ploughing force

σs :

Shear stress along the shear plane

\({\tau }_{s}\) :

Shear flow stress along the shear plane

ρ :

Density

λ k :

Temperature conductivity

σ t :

Ultimate tensile strength

\({v}_{c}\) :

Cutting velocity

\(f\) :

Feed rate

References

  1. Merchant ME (1944) Basic mechanics of the metal-cutting process. ASME J Appl Mech 11:A168

    Article  Google Scholar 

  2. Merchant ME. Mechanics of the metal cutting process. I. Orthogonal cutting and a type 2 chip. J Appl Phys 1945;16:267–75. https://doi.org/10.1063/1.1707586

  3. Merchant ME. Mechanics of the metal cutting process. II. Plasticity conditions in orthogonal cutting. J Appl Phys 1945;16:318–24. https://doi.org/10.1063/1.1707596

  4. Lee EH, Shaffer BW. The theory of plasticity applied to a problem of machining. Division of Applied Mathematics, Brown; 1949

  5. Fang N (2002) Machining with tool–chip contact on the tool secondary rake face—Part I: a new slip-line model. Int J Mech Sci 44:2337–54. https://doi.org/10.1016/S0020-7403(02)00185-6

    Article  MATH  Google Scholar 

  6. Zhu Z, To S, Zhu W-L, Huang P, Zhou X (2019) Cutting forces in fast-/slow tool servo diamond turning of micro-structured surfaces. Int J Mach Tools Manuf 136:62–75. https://doi.org/10.1016/j.ijmachtools.2018.09.003

    Article  Google Scholar 

  7. Oxley PLB. The mechanics of machining: an analytical approach to assessing machinability. Chichester [England] : E. Horwood ; 1989

  8. Oxley PLB (1961) A strain-hardening solution for the “shear angle” in orthogonal metal cutting. Int J Mech Sci 3:68–79. https://doi.org/10.1016/0020-7403(61)90039-X

    Article  Google Scholar 

  9. Childs THC (1980) Elastic effects in metal cutting chip formation. Int J Mech Sci 22:457–66. https://doi.org/10.1016/0020-7403(80)90001-6

    Article  MATH  Google Scholar 

  10. Oxley PLB, Welsh MJM. Calculating the shear angle in orthogonal metal cutting from fundamental stress-strain-strain rate properties of the work material. College of Aeronautics; 1964

  11. Oxley PLB, Hatton AP (1963) Shear angle solution based on experimental shear zone and tool-chip interface stress distributions. Int J Mech Sci 5:41–55. https://doi.org/10.1016/0020-7403(63)90038-9

    Article  Google Scholar 

  12. Oxley PLB, Hastings WF (1977) Predicting the strain rate in the zone of intense shear in which the chip is formed in machining from the dynamic flow stress properties of the work material and the cutting conditions. Proc R Soc Lond Math Phys Sci 356:395–410

    Google Scholar 

  13. Fang N, Jawahir IS, Oxley PLB (2001) A universal slip-line model with non-unique solutions for machining with curled chip formation and a restricted contact tool. Int J Mech Sci 43:557–80. https://doi.org/10.1016/S0020-7403(99)00117-4

    Article  MATH  Google Scholar 

  14. Dewhurst P, Hill R (1978) On the non-uniqueness of the machining process. Proc R Soc Lond Math Phys Sci 360:587–610. https://doi.org/10.1098/rspa.1978.0087

    Article  Google Scholar 

  15. Johnson W (1962) Some slip-line fields for swaging or expanding, indenting, extruding and machining for tools with curved dies. Int J Mech Sci 4:323–47. https://doi.org/10.1016/S0020-7403(62)80022-8

    Article  Google Scholar 

  16. Usui E, Hoshi K. Slip-line fields in metal machining which involve centered fans. Proc Int Prod. Eng. Res. Conf. Pittsburgh ASME, 1963, p. 61–71

  17. Kudo H (1965) Some new slip-line solutions for two-dimensional steady-state machining. Int J Mech Sci 7:43–55. https://doi.org/10.1016/0020-7403(65)90084-6

    Article  Google Scholar 

  18. Shi T, Ramalingam S (1993) Modeling chip formation with grooved tools. Int J Mech Sci 35:741–56. https://doi.org/10.1016/0020-7403(93)90022-M

    Article  Google Scholar 

  19. Fang N, Jawahir IS (2002) Analytical predictions and experimental validation of cutting force ratio, chip thickness, and chip back-flow angle in restricted contact machining using the universal slip-line model. Int J Mach Tools Manuf 42:681–94. https://doi.org/10.1016/S0890-6955(02)00006-8

    Article  Google Scholar 

  20. Fang N (2003) Slip-line modeling of machining with a rounded-edge tool—part I: new model and theory. J Mech Phys Solids 51:715–42. https://doi.org/10.1016/S0022-5096(02)00060-1

    Article  MATH  Google Scholar 

  21. Albrecht P. New developments in the theory of the metal-cutting process: part I. The ploughing process in metal cutting. J Eng Ind 1960;82:348–57. https://doi.org/10.1115/1.3664242

  22. Waldorf DJ, DeVor RE, Kapoor SG (1998) A slip-line field for ploughing during orthogonal cutting. J Manuf Sci Eng 120:693–9. https://doi.org/10.1115/1.2830208

    Article  Google Scholar 

  23. Manjunathaiah J, Endres WJ (2000) A new model and analysis of orthogonal machining with an edge-radiused tool. J Manuf Sci Eng 122:384–90. https://doi.org/10.1115/1.1285886

    Article  Google Scholar 

  24. Connolly R, Rubenstein C (1968) The mechanics of continuous chip formation in orthogonal cutting. Int J Mach Tool Des Res 8:159–87. https://doi.org/10.1016/0020-7357(68)90003-6

    Article  Google Scholar 

  25. Waldorf DJ (2006) A simplified model for ploughing forces in turning. J Manuf Process 8:76–82. https://doi.org/10.1016/S1526-6125(07)00005-9

    Article  Google Scholar 

  26. Zhou J, Ren J (2020) Predicting cutting force with unequal division parallel-sided shear zone model for orthogonal cutting. Int J Adv Manuf Technol 107:4201–11. https://doi.org/10.1007/s00170-020-05273-2

    Article  Google Scholar 

  27. Ozturk S, Altan E (2012) A slip-line approach to the machining with rounded-edge tool. Int J Adv Manuf Technol 63:513–22. https://doi.org/10.1007/s00170-012-3941-6

    Article  Google Scholar 

  28. Long Y, Huang Y (2010) Combined effects of flank and crater wear on cutting force modeling in orthogonal machining—part I: model development. Mach Sci Technol 14:1–23. https://doi.org/10.1080/10910341003676992

    Article  Google Scholar 

  29. Fang N, Dewhurst P (2005) Slip-line modeling of built-up edge formation in machining. Int J Mech Sci 47:1079–98. https://doi.org/10.1016/j.ijmecsci.2005.02.008

    Article  MATH  Google Scholar 

  30. Uysal A, Altan E (2014) A new slip-line field modeling of orthogonal machining with a rounded-edge worn cutting tool. Mach Sci Technol 18:386–423. https://doi.org/10.1080/10910344.2014.925375

    Article  Google Scholar 

  31. Hu C, Zhuang K, Weng J, Zhang X, Ding H (2020) Cutting temperature prediction in negative-rake-angle machining with chamfered insert based on a modified slip-line field model. Int J Mech Sci 167:105273. https://doi.org/10.1016/j.ijmecsci.2019.105273

    Article  Google Scholar 

  32. Fang N (2005) Tool-chip friction in machining with a large negative rake angle tool. Wear 258:890–7. https://doi.org/10.1016/j.wear.2004.09.047

    Article  Google Scholar 

  33. Hu C, Zhuang K, Weng J, Zhang X (2019) Thermal-mechanical model for cutting with negative rake angle based on a modified slip-line field approach. Int J Mech Sci 164:105167. https://doi.org/10.1016/j.ijmecsci.2019.105167

    Article  Google Scholar 

  34. Hastings WF, Mathew P, Oxley PLB. A machining theory for predicting chip geometry, cutting forces etc. from work material properties and cutting conditions. Proc R Soc Lond Math Phys Sci 1980;371:569–87. https://doi.org/10.1098/rspa.1980.0097

  35. Li B, Wang X, Hu Y, Li C (2011) Analytical prediction of cutting forces in orthogonal cutting using unequal division shear-zone model. Int J Adv Manuf Technol 54:431–43. https://doi.org/10.1007/s00170-010-2940-8

    Article  Google Scholar 

  36. Adibi-Sedeh AH, Madhavan V, Bahr B (2003) Extension of Oxley’s analysis of machining to use different material models. J Manuf Sci Eng 125:656–66. https://doi.org/10.1115/1.1617287

    Article  Google Scholar 

  37. Li K-M, Liang SY (2007) Modeling of cutting forces in near dry machining under tool wear effect. Int J Mach Tools Manuf 47:1292–301. https://doi.org/10.1016/j.ijmachtools.2006.08.017

    Article  Google Scholar 

  38. Lalwani DI, Mehta NK, Jain PK (2009) Extension of Oxley’s predictive machining theory for Johnson and Cook flow stress model. J Mater Process Technol 209:5305–12. https://doi.org/10.1016/j.jmatprotec.2009.03.020

    Article  Google Scholar 

  39. Karpat Y, Özel T (2006) Predictive analytical and thermal modeling of orthogonal cutting process-part I: Predictions of tool forces, stresses, and temperature distributions. J Manuf Sci Eng Trans ASME 128:435–44. https://doi.org/10.1115/1.2162590

    Article  Google Scholar 

  40. Baday Ş, Başak H, Sönmez F (2017) The assessment of cutting force with taguchi design in medium carbon steel–applied spheroidization heat treatment. Meas Control 50:89–96. https://doi.org/10.1177/0020294017713767

    Article  Google Scholar 

  41. Taraman K (1974) Multi machining output—multi independent variable turning research by response surface methodology. Int J Prod Res 12:233–45. https://doi.org/10.1080/00207547408919552

    Article  Google Scholar 

  42. Noordin MY, Venkatesh VC, Sharif S, Elting S, Abdullah A (2004) Application of response surface methodology in describing the performance of coated carbide tools when turning AISI 1045 steel. J Mater Process Technol 145:46–58. https://doi.org/10.1016/S0924-0136(03)00861-6

    Article  Google Scholar 

  43. Joardar H, Das NS, Sutradhar G, Singh S (2014) Application of response surface methodology for determining cutting force model in turning of LM6/SiCP metal matrix composite. Measurement 47:452–64. https://doi.org/10.1016/j.measurement.2013.09.023

    Article  Google Scholar 

  44. Szecsi T (1999) Cutting force modeling using artificial neural networks. J Mater Process Technol 92–93:344–9. https://doi.org/10.1016/S0924-0136(99)00183-1

    Article  Google Scholar 

  45. Sharma VS, Dhiman S, Sehgal R, Sharma SK (2008) Estimation of cutting forces and surface roughness for hard turning using neural networks. J Intell Manuf 19:473–83

    Article  Google Scholar 

  46. Lin WS, Lee BY, Wu CL (2001) Modeling the surface roughness and cutting force for turning. J Mater Process Technol 108:286–93. https://doi.org/10.1016/S0924-0136(00)00835-9

    Article  Google Scholar 

  47. Quiza Sardiñas R, Rivas Santana M, Alfonso Brindis E (2006) Genetic algorithm-based multi-objective optimization of cutting parameters in turning processes. Eng Appl Artif Intell 19:127–33. https://doi.org/10.1016/j.engappai.2005.06.007

    Article  Google Scholar 

  48. Ranganath S, Campbell AB, Gorkiewicz DW (2007) A model to calibrate and predict forces in machining with honed cutting tools or inserts. Int J Mach Tools Manuf 47:820–40. https://doi.org/10.1016/j.ijmachtools.2006.06.019

    Article  Google Scholar 

  49. Fu Z, Chen X, Mao J, Xiong T (2018) An analytical force mode applied to three-dimensional turning based on a predictive machining theory. Int J Mech Sci 136:94–105. https://doi.org/10.1016/j.ijmecsci.2017.12.021

    Article  Google Scholar 

  50. Cheng F (2016) Modeling and analysis of cutting force in turning process of freeform surfaces based on fast tool servo. Jilin University, Master degree

    Google Scholar 

  51. Ren H, Altintas Y (2000) Mechanics of machining with chamfered tools. J Manuf Sci Eng 122:650–9. https://doi.org/10.1115/1.1286368

    Article  Google Scholar 

  52. Weng J, Zhuang K, Chen D, Guo S, Ding H (2017) An analytical force prediction model for turning operation by round insert considering edge effect. Int J Mech Sci 128–129:168–80. https://doi.org/10.1016/j.ijmecsci.2017.04.018

    Article  Google Scholar 

  53. Weng J, Zhuang K, Hu C, Ding H (2020) A PSO-based semi-analytical force prediction model for chamfered carbide tools considering different material flow state caused by edge geometry. Int J Mech Sci 169:105329. https://doi.org/10.1016/j.ijmecsci.2019.105329

    Article  Google Scholar 

  54. Sewailem MR, Mobarak IM (1981) The practical estimation of tool wear in turning. Wear 67:261–9. https://doi.org/10.1016/0043-1648(81)90041-7

    Article  Google Scholar 

  55. Chang C-S (1998) A force model for nose radius worn tools with a chamfered main cutting edge. Int J Mach Tools Manuf 38:1467–98. https://doi.org/10.1016/S0890-6955(98)00006-6

    Article  Google Scholar 

  56. Orra K, Choudhury SK (2018) Mechanistic modelling for predicting cutting forces in machining considering effect of tool nose radius on chip formation and tool wear land. Int J Mech Sci 142–143:255–68. https://doi.org/10.1016/j.ijmecsci.2018.05.004

    Article  Google Scholar 

  57. Huang Y, Liang SY (2005) Modeling of cutting forces under hard turning conditions considering tool wear effect. J Manuf Sci Eng 127:262–70. https://doi.org/10.1115/1.1852571

    Article  Google Scholar 

  58. Chinchanikar S, Choudhury SK (2016) Cutting force modeling considering tool wear effect during turning of hardened AISI 4340 alloy steel using multi-layer TiCN/Al2O3/TiN-coated carbide tools. Int J Adv Manuf Technol 83:1749–62. https://doi.org/10.1007/s00170-015-7662-5

    Article  Google Scholar 

  59. Chen Y, Wang J, An Q (2021) Mechanisms and predictive force models for machining with rake face textured cutting tools under orthogonal cutting conditions. Int J Mech Sci 195:106246. https://doi.org/10.1016/j.ijmecsci.2020.106246

    Article  Google Scholar 

  60. Zhu R, Kapoor SG, DeVor RE, Athavale SM (1999) Mechanistic force models for chip control tools. J Manuf Sci Eng 121:408–16. https://doi.org/10.1115/1.2832696

    Article  Google Scholar 

  61. Parakkal G, Zhu R, Kapoor SG, DeVor RE (2002) Modeling of turning process cutting forces for grooved tools. Int J Mach Tools Manuf 42:179–91. https://doi.org/10.1016/S0890-6955(01)00121-3

    Article  Google Scholar 

  62. Takeyama H, Iijima N (1988) Machinability of glassfiber reinforced plastics and application of ultrasonic machining. CIRP Ann 37:93–6. https://doi.org/10.1016/S0007-8506(07)61593-5

    Article  Google Scholar 

  63. Lee BY, Tarng YS (1994) Prediction of specific cutting force and cutting force ratio in turning. J Mater Process Technol 41:71–82. https://doi.org/10.1016/0924-0136(94)90177-5

    Article  Google Scholar 

  64. Bhatnagar N, Ramakrishnan N, Naik NK, Komanduri R (1995) On the machining of fiber reinforced plastic (FRP) composite laminates. Int J Mach Tools Manuf 35:701–16. https://doi.org/10.1016/0890-6955(95)93039-9

    Article  Google Scholar 

  65. Yang X, Zhang B (2019) Material embrittlement in high strain-rate loading. Int J Extreme Manuf 1:022003. https://doi.org/10.1088/2631-7990/ab263f

    Article  Google Scholar 

  66. Xie J, Luo MJ, Wu KK, Yang LF, Li DH (2013) Experimental study on cutting temperature and cutting force in dry turning of titanium alloy using a non-coated micro-grooved tool. Int J Mach Tools Manuf 73:25–36. https://doi.org/10.1016/j.ijmachtools.2013.05.006

    Article  Google Scholar 

  67. Jiang K, Wu X, Lei J, Xu B, Zhu L, Cao Y et al (2020) Cutting force and tool wear in cutting Ti-6Al-4V using microstructure-based PCD turning tools. Procedia CIRP 95:572–7. https://doi.org/10.1016/j.procir.2020.02.288

    Article  Google Scholar 

  68. Li S, Zhang D, Liu C, Shao Z, Ren L (2021) Influence of dynamic angles and cutting strain on chip morphology and cutting forces during titanium alloy Ti-6Al-4 V vibration-assisted drilling. J Mater Process Technol 288:116898. https://doi.org/10.1016/j.jmatprotec.2020.116898

    Article  Google Scholar 

  69. Yip WS, To S, Sun Z (2021) Hybrid ultrasonic vibration and magnetic field assisted diamond cutting of titanium alloys. J Manuf Process 62:743–52. https://doi.org/10.1016/j.jmapro.2020.12.037

    Article  Google Scholar 

  70. Sun S, Brandt M, Dargusch MS (2009) Characteristics of cutting forces and chip formation in machining of titanium alloys. Int J Mach Tools Manuf 49:561–8. https://doi.org/10.1016/j.ijmachtools.2009.02.008

    Article  Google Scholar 

  71. Wan ZP, Zhu YE, Liu HW, Tang Y (2012) Microstructure evolution of adiabatic shear bands and mechanisms of saw-tooth chip formation in machining Ti6Al4V. Mater Sci Eng A 531:155–63. https://doi.org/10.1016/j.msea.2011.10.050

    Article  Google Scholar 

  72. Barry J, Byrne G, Lennon D (2001) Observations on chip formation and acoustic emission in machining Ti–6Al–4V alloy. Int J Mach Tools Manuf 41:1055–70. https://doi.org/10.1016/S0890-6955(00)00096-1

    Article  Google Scholar 

  73. Bai W, Sun R, Roy A, Silberschmidt VV (2017) Improved analytical prediction of chip formation in orthogonal cutting of titanium alloy Ti6Al4V. Int J Mech Sci 133:357–67. https://doi.org/10.1016/j.ijmecsci.2017.08.054

    Article  Google Scholar 

  74. Jagadesh T, Samuel GL (2015) Mechanistic and finite element model for prediction of cutting forces during micro-turning of titanium alloy. Mach Sci Technol 19:593–629. https://doi.org/10.1080/10910344.2015.1085318

    Article  Google Scholar 

  75. Suárez Fernández D, Jackson M, Crawforth P, Fox K, Wynne BP (2020) Using machining force feedback to quantify grain size in beta titanium. Materialia 13:100856. https://doi.org/10.1016/j.mtla.2020.100856

    Article  Google Scholar 

  76. Arısoy YM, Özel T (2015) Prediction of machining induced microstructure in Ti–6Al–4V alloy using 3-D FE-based simulations: Effects of tool micro-geometry, coating and cutting conditions. J Mater Process Technol 220:1–26. https://doi.org/10.1016/j.jmatprotec.2014.11.002

    Article  Google Scholar 

  77. Pan Z, Shih DS, Tabei A, Garmestani H, Liang SY (2017) Modeling of Ti-6Al-4V machining force considering material microstructure evolution. Int J Adv Manuf Technol 91:2673–80. https://doi.org/10.1007/s00170-016-9964-7

    Article  Google Scholar 

  78. Zhao Q, Wang Y, Yu G, Dong S, Zhang X (2009) Investigation of anisotropic mechanisms in ultra-precision diamond machining of KDP crystal. J Mater Process Technol 209:4169–77. https://doi.org/10.1016/j.jmatprotec.2008.10.010

    Article  Google Scholar 

  79. Fuchs BA, Hed PP, Baker PC (1986) Fine diamond turning of KDP crystals. Appl Opt 25:1733. https://doi.org/10.1364/AO.25.001733

    Article  Google Scholar 

  80. Namba Y, Katagiri M, Nakatsuka M (1998) Single point diamond turning of KDP inorganic nonlinear optical crystals for laser fusion. J-Jpn Soc Precis Eng 64:1487–91

    Article  Google Scholar 

  81. Zhang S, Zong W (2021) FE-SPH hybrid method to simulate the effect of tool inclination angle in oblique diamond cutting of KDP crystal. Int J Mech Sci 196:106271. https://doi.org/10.1016/j.ijmecsci.2021.106271

    Article  Google Scholar 

  82. Lee WB (1990) Prediction of microcutting force variation in ultra-precision machining. Precis Eng 12:25–8. https://doi.org/10.1016/0141-6359(90)90005-J

    Article  Google Scholar 

  83. Wang S, An C, Zhang F, Wang J, Lei X, Zhang J (2016) An experimental and theoretical investigation on the brittle ductile transition and cutting force anisotropy in cutting KDP crystal. Int J Mach Tools Manuf 106:98–108. https://doi.org/10.1016/j.ijmachtools.2016.04.009

    Article  Google Scholar 

  84. Zhang S, Zhang H, Zong W (2019) Modeling and simulation on the effect of tool rake angle in diamond turning of KDP crystal. J Mater Process Technol 273:116259. https://doi.org/10.1016/j.jmatprotec.2019.116259

    Article  Google Scholar 

  85. Zhang S, Zong W (2020) A novel surface roughness model for potassium dihydrogen phosphate (KDP) crystal in oblique diamond turning. Int J Mech Sci 173:105462. https://doi.org/10.1016/j.ijmecsci.2020.105462

    Article  Google Scholar 

  86. Everstine GC, Rogers TG (1971) A theory of machining of fiber-reinforced materials. J Compos Mater 5:94–106. https://doi.org/10.1177/002199837100500109

    Article  Google Scholar 

  87. Wan M, Li S-E, Yuan H, Zhang W-H (2019) Cutting force modelling in machining of fiber-reinforced polymer matrix composites (PMCs): a review. Compos Part Appl Sci Manuf 117:34–55. https://doi.org/10.1016/j.compositesa.2018.11.003

    Article  Google Scholar 

  88. Henerichs M, Voß R, Kuster F, Wegener K (2015) Machining of carbon fiber reinforced plastics: Influence of tool geometry and fiber orientation on the machining forces. CIRP J Manuf Sci Technol 9:136–45. https://doi.org/10.1016/j.cirpj.2014.11.002

    Article  Google Scholar 

  89. Zhang LC, Zhang HJ, Wang XM (2001) A force prediction model for cutting unidirectional fibre-reinforced plastics. Mach Sci Technol 5:293–305. https://doi.org/10.1081/MST-100108616

    Article  Google Scholar 

  90. Jahromi SS, Bahr B (2010) An analytical method for predicting cutting forces in orthogonal machining of unidirectional composites. Compos Sci Technol 70:2290–7. https://doi.org/10.1016/j.compscitech.2010.09.005

    Article  Google Scholar 

  91. Qi Z, Zhang K, Cheng H, Wang D, Meng Q (2015) Microscopic mechanism based force prediction in orthogonal cutting of unidirectional CFRP. Int J Adv Manuf Technol 79:1209–19. https://doi.org/10.1007/s00170-015-6895-7

    Article  Google Scholar 

  92. Voss R, Seeholzer L, Kuster F, Wegener K (2019) Analytical force model for orthogonal machining of unidirectional carbon fibre reinforced polymers (CFRP) as a function of the fibre orientation. J Mater Process Technol 263:440–69. https://doi.org/10.1016/j.jmatprotec.2018.08.001

    Article  Google Scholar 

  93. Narutaki N (1996) Machining of MMC’s. Vdi Berichte 1276:359–71

    Google Scholar 

  94. An energy based analytical force model for orthogonal cutting of metal matrix composites. CIRP Ann 2004;53:91–4. https://doi.org/10.1016/S0007-8506(07)60652-0

  95. Pramanik A, Zhang LC, Arsecularatne JA (2008) Machining of metal matrix composites: effect of ceramic particles on residual stress, surface roughness and chip formation. Int J Mach Tools Manuf 48:1613–25. https://doi.org/10.1016/j.ijmachtools.2008.07.008

    Article  Google Scholar 

  96. Pramanik A, Zhang LC, Arsecularatne JA (2006) Prediction of cutting forces in machining of metal matrix composites. Int J Mach Tools Manuf 46:1795–803. https://doi.org/10.1016/j.ijmachtools.2005.11.012

    Article  Google Scholar 

  97. Sikder S, Kishawy HA (2012) Analytical model for force prediction when machining metal matrix composite. Int J Mech Sci 59:95–103. https://doi.org/10.1016/j.ijmecsci.2012.03.010

    Article  Google Scholar 

  98. Dabade UA, Dapkekar D, Joshi SS (2009) Modeling of chip–tool interface friction to predict cutting forces in machining of Al/SiCp composites. Int J Mach Tools Manuf 49:690–700. https://doi.org/10.1016/j.ijmachtools.2009.03.003

    Article  Google Scholar 

  99. Shan C, Zhang M, Yang Y, Zhang S, Luo M (2020) A dynamic cutting force model for transverse orthogonal cutting of unidirectional carbon/carbon composites considering fiber distribution. Compos Struct 251:112668. https://doi.org/10.1016/j.compstruct.2020.112668

    Article  Google Scholar 

  100. Liu C, Gao L, Jiang X, Xu W, Liu S, Yang T (2020) Analytical modeling of subsurface damage depth in machining of SiCp/Al composites. Int J Mech Sci 185:105874. https://doi.org/10.1016/j.ijmecsci.2020.105874

    Article  Google Scholar 

  101. Rusinek R, Wiercigroch M, Wahi P (2014) Modelling of frictional chatter in metal cutting. Int J Mech Sci 89:167–76. https://doi.org/10.1016/j.ijmecsci.2014.08.020

    Article  Google Scholar 

  102. Grabec I (1986) Chaos generated by the cutting process. Phys Lett A 117:3

    Article  MathSciNet  Google Scholar 

  103. Wiercigroch M, Krivtsov AM (2001) Frictional chatter in orthogonal metal cutting. Philos Trans R Soc Lond Ser Math Phys Eng Sci 359:713–38. https://doi.org/10.1098/rsta.2000.0752

    Article  MATH  Google Scholar 

  104. Lu K, Wang Y, Gu F, Pang X, Ball A (2019) Dynamic modeling and chatter analysis of a spindle-workpiece-tailstock system for the turning of flexible parts. Int J Adv Manuf Technol 104:3007–15. https://doi.org/10.1007/s00170-019-04224-w

    Article  Google Scholar 

  105. Tobias SA, Fishwick W (1958) Theory of regenerative machine tool chatter. The Engineer 205:199–203

    Google Scholar 

  106. Hayajneh MT, Astakhov VP, Osman MOM (1998) An analytical evaluation of the cutting forces in orthogonal cutting using a dynamic model of the shear zone with parallel boundaries. J Mater Process Technol 82:61–77. https://doi.org/10.1016/S0924-0136(98)00021-1

    Article  Google Scholar 

  107. Astakhov VP, Osman MOM. An analytical evaluation of the cutting forces in self-piloting drilling using the model of shear zone with parallel boundaries. Part 1: Theory. Int J Mach Tools Manuf 1996;36:1187–200. https://doi.org/10.1016/0890-6955(96)00024-7

  108. Lin JS, Weng CI (1990) A nonlinear dynamic model of cutting. Int J Mach Tools Manuf 30:53–64. https://doi.org/10.1016/0890-6955(90)90041-G

    Article  Google Scholar 

  109. Shi HM, Tobias SA (1984) Theory of finite amplitude machine tool instability. Int J Mach Tool Des Res 24:45–69. https://doi.org/10.1016/0020-7357(84)90045-3

    Article  Google Scholar 

  110. Jemielniak K. Numerical simulation of non-linear chatter vibration in turning n.d.:9

  111. Tarng YS, Young HT, Lee BY (1994) An analytical model of chatter vibration in metal cutting. Int J Mach Tools Manuf 34:183–97. https://doi.org/10.1016/0890-6955(94)90100-7

    Article  Google Scholar 

  112. Kilic ZM, Altintas Y (2016) Generalized mechanics and dynamics of metal cutting operations for unified simulations. Int J Mach Tools Manuf 104:1–13. https://doi.org/10.1016/j.ijmachtools.2016.01.006

    Article  Google Scholar 

  113. Yan Y, Xu J, Wiercigroch M, Guo Q (2021) Statistical basin of attraction in time-delayed cutting dynamics: Modelling and computation. Phys Nonlinear Phenom 416:132779. https://doi.org/10.1016/j.physd.2020.132779

    Article  MathSciNet  Google Scholar 

  114. Yan Y, Xu J, Wiercigroch M (2017) Basins of attraction of the bistable region of time-delayed cutting dynamics. Phys Rev E 96:032205. https://doi.org/10.1103/PhysRevE.96.032205

    Article  MathSciNet  Google Scholar 

  115. Kim JS, Lee BH (1991) An analytical model of dynamic cutting forces in chatter vibration. Int J Mach Tools Manuf 31:371–81. https://doi.org/10.1016/0890-6955(91)90082-E

    Article  Google Scholar 

  116. Wahi P, Chatterjee A (2008) Self-interrupted regenerative metal cutting in turning. Int J Non-Linear Mech 43:111–23. https://doi.org/10.1016/j.ijnonlinmec.2007.10.010

    Article  Google Scholar 

  117. Molnár TG, Insperger T, John Hogan S, Stépán G (2016) Estimation of the bistable zone for machining operations for the case of a distributed cutting-force model. J Comput Nonlinear Dyn 11:051008. https://doi.org/10.1115/1.4032443

    Article  Google Scholar 

  118. Stépán G (1998) Delay-differential equation models for machine tool chatter. Dyn Chaos Manuf Process 471152935:165–92

    Google Scholar 

  119. Wiercigroch M (1997) Chaotic vibration of a simple model of the machine tool-cutting process system. J Vib Acoust 119:468–75. https://doi.org/10.1115/1.2889747

    Article  Google Scholar 

  120. Yan Y, Xu J, Wiercigroch M (2019) Modelling of regenerative and frictional cutting dynamics. Int J Mech Sci 156:86–93. https://doi.org/10.1016/j.ijmecsci.2019.03.032

    Article  Google Scholar 

  121. Fodor G, Sykora HT, Bachrathy D (2020) Stochastic modeling of the cutting force in turning processes. Int J Adv Manuf Technol 111:213–26. https://doi.org/10.1007/s00170-020-05877-8

    Article  Google Scholar 

  122. Rezayi Khoshdarregi M, Altintas Y (2015) Generalized modeling of chip geometry and cutting forces in multi-point thread turning. Int J Mach Tools Manuf 98:21–32. https://doi.org/10.1016/j.ijmachtools.2015.08.005

    Article  Google Scholar 

  123. Cheng K, Huo D (2013) Micro Cutting: Fundamentals and Applications. John Wiley & Sons, Chichester

    Book  Google Scholar 

  124. Liu X, DeVor RE, Kapoor SG (2006) An analytical model for the prediction of minimum chip thickness in micromachining. J Manuf Sci Eng 128:474–81. https://doi.org/10.1115/1.2162905

    Article  Google Scholar 

  125. Liu K, Melkote SN (2007) Finite element analysis of the influence of tool edge radius on size effect in orthogonal micro-cutting process. Int J Mech Sci 49:650–60. https://doi.org/10.1016/j.ijmecsci.2006.09.012

    Article  Google Scholar 

  126. Weng J, Zhuang K, Zhu D, Guo S, Ding H (2018) An analytical model for the prediction of force distribution of round insert considering edge effect and size effect. Int J Mech Sci 138–139:86–98. https://doi.org/10.1016/j.ijmecsci.2018.01.024

    Article  Google Scholar 

  127. Jin X, Altintas Y (2011) Slip-line field model of micro-cutting process with round tool edge effect. J Mater Process Technol 211:339–55. https://doi.org/10.1016/j.jmatprotec.2010.10.006

    Article  Google Scholar 

  128. Huang P, Lee WB (2016) Cutting force prediction for ultra-precision diamond turning by considering the effect of tool edge radius. Int J Mach Tools Manuf 109:1–7. https://doi.org/10.1016/j.ijmachtools.2016.06.005

    Article  Google Scholar 

  129. Zhao Z, To S, Zhu Z, Yin T (2020) A theoretical and experimental investigation of cutting forces and spring back behaviour of Ti6Al4V alloy in ultraprecision machining of microgrooves. Int J Mech Sci 169:105315. https://doi.org/10.1016/j.ijmecsci.2019.105315

    Article  Google Scholar 

  130. Yuan ZJ, Lee WB, Yao YX, Zhou M (1994) Effect of crystallographic orientation on cutting forces and surface quality in diamond cutting of single crystal. CIRP Ann 43:39–42. https://doi.org/10.1016/S0007-8506(07)62159-3

    Article  Google Scholar 

  131. Lawson BL, Kota N, Ozdoganlar OB. Effects of crystallographic anistropy on orthogonal micromachining of single-crystal aluminum. J Manuf Sci Eng 2008;130. https://doi.org/10.1115/1.2917268

  132. Demir E (2008) Taylor-based model for micro-machining of single crystal fcc materials including frictional effects—Application to micro-milling process. Int J Mach Tools Manuf 48:1592–8. https://doi.org/10.1016/j.ijmachtools.2008.07.002

    Article  Google Scholar 

  133. Demir E (2009) A method to include plastic anisotropy to orthogonal micromachining of fcc single crystals. Int J Adv Manuf Technol 43:474–81. https://doi.org/10.1007/s00170-008-1738-4

    Article  Google Scholar 

  134. Demir E, Mercan C (2018) A physics-based single crystal plasticity model for crystal orientation and length scale dependence of machining response. Int J Mach Tools Manuf 134:25–41. https://doi.org/10.1016/j.ijmachtools.2018.06.004

    Article  Google Scholar 

  135. Kota N (2011) Mechanical Micromachining-Effect of Crystallographic Anisotropy on Machining Forces. Carnegie Mellon University Pittsburgh, PA

    Google Scholar 

  136. Lee WB, To S, Sze YK, Cheung CF (2003) Effect of material anisotropy on shear angle prediction in metal cutting—a mesoplasticity approach. Int J Mech Sci 45:1739–49. https://doi.org/10.1016/j.ijmecsci.2003.09.024

    Article  MATH  Google Scholar 

  137. Wang Z, Zhang J, Xu Z, Zhang J, Li G, Zhang H et al (2020) Crystal anisotropy-dependent shear angle variation in orthogonal cutting of single crystalline copper. Precis Eng 63:41–8. https://doi.org/10.1016/j.precisioneng.2020.01.006

    Article  Google Scholar 

  138. Brehl DE, Dow TA (2008) Review of vibration-assisted machining. Precis Eng 32:153–72. https://doi.org/10.1016/j.precisioneng.2007.08.003

    Article  Google Scholar 

  139. Shamoto E, Moriwaki T (1994) Study on elliptical vibration cutting. CIRP Ann 43:35–8. https://doi.org/10.1016/S0007-8506(07)62158-1

    Article  Google Scholar 

  140. Kim GD, Loh BG (2007) Characteristics of chip formation in micro V-grooving using elliptical vibration cutting. J Micromechanics Microengineering 17:1458–66. https://doi.org/10.1088/0960-1317/17/8/007

    Article  Google Scholar 

  141. Suzuki N, Yokoi H, Shamoto E (2011) Micro/nano sculpturing of hardened steel by controlling vibration amplitude in elliptical vibration cutting. Precis Eng 35:44–50. https://doi.org/10.1016/j.precisioneng.2010.09.006

    Article  Google Scholar 

  142. Ma C, Shamoto E, Moriwaki T, Zhang Y, Wang L (2005) Suppression of burrs in turning with ultrasonic elliptical vibration cutting. Int J Mach Tools Manuf 45:1295–300. https://doi.org/10.1016/j.ijmachtools.2005.01.011

    Article  Google Scholar 

  143. Shamoto E, Moriwaki T (1999) Ultaprecision diamond cutting of hardened steel by applying elliptical vibration cutting. CIRP Ann 48:441–4. https://doi.org/10.1016/S0007-8506(07)63222-3

    Article  Google Scholar 

  144. Kim GD, Loh BG (2013) Cutting force variation with respect to tilt angle of trajectory in elliptical vibration V-grooving. Int J Precis Eng Manuf 14:1861–4. https://doi.org/10.1007/s12541-013-0249-x

    Article  Google Scholar 

  145. Xu W, Zhang LC, Wu Y (2014) Elliptic vibration-assisted cutting of fibre-reinforced polymer composites: Understanding the material removal mechanisms. Compos Sci Technol 92:103–11. https://doi.org/10.1016/j.compscitech.2013.12.011

    Article  Google Scholar 

  146. Ammouri AH, Hamade RF. A bi-directional ultrasonic elliptical vibration actuator (BUEVA) for micro machining, American Society of Mechanical Engineers Digital Collection; 2010, p. 523–7. https://doi.org/10.1115/IMECE2009-10132

  147. Negeishi N. Elliptical vibration-assisted machining with single crystal diamond tools. MS Thesis N C State Univ 2003

  148. Kurniawan R, Kiswanto G, Ko TJ (2016) Micro-dimple pattern process and orthogonal cutting force analysis of elliptical vibration texturing. Int J Mach Tools Manuf 106:127–40. https://doi.org/10.1016/j.ijmachtools.2016.03.007

    Article  Google Scholar 

  149. Bai W, Sun R, Gao Y, Leopold J (2016) Analysis and modeling of force in orthogonal elliptical vibration cutting. Int J Adv Manuf Technol 83:1025–36. https://doi.org/10.1007/s00170-015-7645-6

    Article  Google Scholar 

  150. Sun Z, To S, Wang S (2019) An analytical force model for ultra-precision diamond sculpturing of micro-grooves with textured surfaces. Int J Mech Sci 160:129–39. https://doi.org/10.1016/j.ijmecsci.2019.06.032

    Article  Google Scholar 

  151. Juergens RC, Shepard III RH, Schaefer JP. Simulation of single-point diamond turning fabrication process errors. Nov. Opt. Syst. Des. Optim. VI, vol. 5174, International Society for Optics and Photonics; 2003, p. 93–104

  152. Zhang G, Dai Y, To S, Wu X, Lou Y (2019) Tool interference at workpiece centre in single-point diamond turning. Int J Mech Sci 151:1–12. https://doi.org/10.1016/j.ijmecsci.2018.10.057

    Article  Google Scholar 

  153. Dai Y, Zhang G, Luo T, Luo Q (2020) Centre cone generation and its force performance in single-point diamond turning. Int J Mech Sci 184:105780. https://doi.org/10.1016/j.ijmecsci.2020.105780

    Article  Google Scholar 

  154. Astakhov VP, Shvets S (2004) The assessment of plastic deformation in metal cutting. J Mater Process Technol 146:193–202. https://doi.org/10.1016/j.jmatprotec.2003.10.015

    Article  Google Scholar 

  155. Vyas A, Shaw MC (1999) Mechanics of saw-tooth chip formation in metal cutting. J Manuf Sci Eng 121:163–72. https://doi.org/10.1115/1.2831200

    Article  Google Scholar 

  156. Enomoto T, Sugihara T (2010) Improving anti-adhesive properties of cutting tool surfaces by nano-/micro-textures. CIRP Ann 59:597–600. https://doi.org/10.1016/j.cirp.2010.03.130

    Article  Google Scholar 

  157. Shaw MC, Cookson JO (2005) Metal cutting principles, vol 2. Oxford University Press, New York

    Google Scholar 

  158. Toropov A, Ko S-L (2007) Prediction of shear angle for continuous orthogonal cutting using thermo-mechanical constants of work material and cutting conditions. J Mater Process Technol 182:167–73. https://doi.org/10.1016/j.jmatprotec.2006.07.027

    Article  Google Scholar 

  159. Zhang X, Arif M, Liu K, Kumar AS, Rahman M (2013) A model to predict the critical undeformed chip thickness in vibration-assisted machining of brittle materials. Int J Mach Tools Manuf 69:57–66. https://doi.org/10.1016/j.ijmachtools.2013.03.006

    Article  Google Scholar 

  160. Gente A, Hoffmeister H-W, Evans CJ (2001) Chip formation in machining Ti6Al4V at extremely high cutting speeds. CIRP Ann 50:49–52. https://doi.org/10.1016/S0007-8506(07)62068-X

    Article  Google Scholar 

Download references

Funding

The authors received financial support from National Natural Science Foundation of China (no. 51975128, no. 52005110).

Author information

Authors and Affiliations

Authors

Contributions

Wang Sujuan: Final manuscript writing; Zhang Tao: Original draft preparation; Deng Wenping: Manuscript format; Sun Zhanwen: Sections including challenges and opportunities conclusion writing; Sandy To: abstract writing and supervisor

Corresponding author

Correspondence to Sun Zhanwen.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable

Consent for publication

Not applicable.

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sujuan, W., Tao, Z., Wenping, D. et al. Analytical modeling and prediction of cutting forces in orthogonal turning: a review. Int J Adv Manuf Technol 119, 1407–1434 (2022). https://doi.org/10.1007/s00170-021-08114-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-08114-y

Keywords

Navigation