Skip to main content

Advertisement

Log in

Antivibration and energy efficiency design for large stroke additive manufacturing based on dynamic trajectory adaption

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Antivibration performance is one of the crucial indicators of high precision machinery, which contributes to energy efficiency simultaneously. Toward this aim, an antivibration and energy efficiency design method for large stroke additive manufacturing (AM) based on dynamic trajectory adaption (DTA) is put forward. The kinematic model of mechanical vibration in the AM system is constructed firstly. The energy consumption model of mechanical vibration whose major component is servo energy due to frequent movements along the vested trajectory is proposed, which spontaneously inspires DTA to focus on infill pattern adaption and related trajectory optimization. By physical experiment across desktop-level, large stroke, and non-contact optical profilometer measurement, the crucial metrics of antivibration and energy efficiency including mean trajectory deviation and total energy consumption are both optimized by the DTA method with an improvement rate as high as − 15.65% and − 12.28% respectively. The results show that the proposed DTA method can adapt to the layered cross-section with more optimal fusing parameters which contributes to the antivibration and energy efficiency design of the complex product for large stroke AM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Shah J, Snider B, Clarke T, Kozutsky S, Lacki M, Hosseini A (2019) Large-scale 3D printers for additive manufacturing: design considerations and challenges. Int J Adv Manuf Technol 104(9–12):3679–3693. https://doi.org/10.1007/s00170-019-04074-6

    Article  Google Scholar 

  2. Boulaala M, Elmessaoudi D, Buj-Corral I, El Mesbahi J, Ezbakhe O, Astito A, El Mrabet M, El Mesbahi A (2020) Towards design of mechanical part and electronic control of multi-material/multicolor fused deposition modeling 3D printing. Int J Adv Manuf Technol 110(1–2):45–55. https://doi.org/10.1007/s00170-020-05847-0

    Article  Google Scholar 

  3. Brooks BJ, Arif KM, Dirven S, Potgieter J (2017) Robot-assisted 3D printing of biopolymer thin shells. Int J Adv Manuf Technol 89(1–4):957–968. https://doi.org/10.1007/s00170-016-9134-y

    Article  Google Scholar 

  4. Hanon MM, Alshammas Y, Zsidai L (2020) Effect of print orientation and bronze existence on tribological and mechanical properties of 3D-printed bronze/PLA composite. Int J Adv Manuf Technol 108(1–2):553–570. https://doi.org/10.1007/s00170-020-05391-x

    Article  Google Scholar 

  5. Wu H, Wang Y, Yu Z (2016) In situ monitoring of FDM machine condition via acoustic emission. Int J Adv Manuf Technol 84(5–8):1483–1495. https://doi.org/10.1007/s00170-015-7809-4

    Article  Google Scholar 

  6. Tlegenov Y, Hong GS, Lu WF (2018) Nozzle condition monitoring in 3D printing. Robot Comput Integr Manuf 54:45–55. https://doi.org/10.1016/j.rcim.2018.05.010

    Article  Google Scholar 

  7. Zhang S, Sun Z, Long J, Li C, Bai Y (2019) Dynamic condition monitoring for 3D printers by using error fusion of multiple sparse auto-encoders. Comput Ind 105:164–176. https://doi.org/10.1016/j.compind.2018.12.004

    Article  Google Scholar 

  8. Gibert JM, Fadel G, Daqaq MF (2013) On the stick-slip dynamics in ultrasonic additive manufacturing. J Sound Vib 332(19):4680–4695. https://doi.org/10.1016/j.jsv.2013.04.007

    Article  Google Scholar 

  9. Faria C, Fonseca J, Bicho E (2020) FIBR3DEmul—an open-access simulation solution for 3D printing processes of FDM machines with 3+ actuated axes. Int J Adv Manuf Technol 106(7–8):3609–3623. https://doi.org/10.1007/s00170-019-04713-y

    Article  Google Scholar 

  10. Lazarus A, Prabel B, Combescure D (2010) A 3D finite element model for the vibration analysis of asymmetric rotating machines. J Sound Vib 329(18):3780–3797. https://doi.org/10.1016/j.jsv.2010.03.029

    Article  Google Scholar 

  11. Toh CK (2004) Vibration analysis in high speed rough and finish milling hardened steel. J Sound Vib 278(1–2):101–115. https://doi.org/10.1016/j.jsv.2003.11.012

    Article  Google Scholar 

  12. Guasch O (2009) Direct transfer functions and path blocking in a discrete mechanical system. J Sound Vib 321(3–5):854–874. https://doi.org/10.1016/j.jsv.2008.10.006

    Article  Google Scholar 

  13. Ebrahimi F, Habibi S (2016) Deflection and vibration analysis of higher-order shear deformable compositionally graded porous plate. Steel Compos Struct 20(1):205–225

    Article  Google Scholar 

  14. Matlack KH, Bauhofer A, Krödel S, Palermo A, Daraio C (2016) Composite 3D-printed metastructures for low-frequency and broadband vibration absorption. Proc Natl Acad Sci 113(30):8386–8390. https://doi.org/10.1073/pnas.1600171113

    Article  Google Scholar 

  15. Urbikain G, Olvera D, de Lacalle LNL, Elías-Zúñiga A (2016) Spindle speed variation technique in turning operations: modeling and real implementation. J Sound Vib 383:384–396. https://doi.org/10.1016/j.jsv.2016.07.033

    Article  Google Scholar 

  16. Olvera D, Urbikain G, Elías-Zuñiga A, López de Lacalle L (2018) Improving stability prediction in peripheral milling of Al7075T6. Appl Sci 8(8):1316. https://doi.org/10.3390/app8081316

    Article  Google Scholar 

  17. Isaev A, Grechishnikov V, Pivkin P, Mihail K, Ilyuhin Y, Vorotnikov A (2016) Machining of thin-walled parts produced by additive manufacturing technologies. Procedia CIRP 41:1023–1026. https://doi.org/10.1016/j.procir.2015.08.088

    Article  Google Scholar 

  18. Gunduz IE, McClain MS, Cattani P, Chiu GT-C, Rhoads JF, Son SF (2018) 3D printing of extremely viscous materials using ultrasonic vibrations. Addit Manuf 22:98–103. https://doi.org/10.1016/j.addma.2018.04.029

    Article  Google Scholar 

  19. Li C, Sun S, Liu C, Lu Q, Ma P, Wang Y (2019) Microstructure and mechanical properties of TiC/AlSi10Mg alloy fabricated by laser additive manufacturing under high-frequency micro-vibration. J Alloys Compd 794:236–246. https://doi.org/10.1016/j.jallcom.2019.04.287

    Article  Google Scholar 

  20. Stichel T, Laumer T, Baumüller T, Amend P, Roth S (2014) Powder layer preparation using vibration-controlled capillary steel nozzles for additive manufacturing. Phys Procedia 56:157–166. https://doi.org/10.1016/j.phpro.2014.08.158

    Article  Google Scholar 

  21. Tabernero I, Calleja A, Lamikiz A, López De Lacalle LN (2013) Optimal parameters for 5-axis Laser cladding. Procedia Eng 63:45–52. https://doi.org/10.1016/j.proeng.2013.08.229

    Article  Google Scholar 

  22. Tabernero I, Lamikiz A, Martínez S, Ukar E, De LLNL (2012) Geometric modelling of added layers by coaxial laser cladding. Phys Procedia 39:913–920. https://doi.org/10.1016/j.phpro.2012.10.116

    Article  Google Scholar 

  23. Tabernero I, Lamikiz A, Ukar E, López De Lacalle LN, Angulo C, Urbikain G (2010) Numerical simulation and experimental validation of powder flux distribution in coaxial laser cladding. J Mater Process Technol 210(15):2125–2134. https://doi.org/10.1016/j.jmatprotec.2010.07.036

    Article  Google Scholar 

  24. Lamikiz A, Sánchez JA, López de Lacalle LN, Arana JL (2007) Laser polishing of parts built up by selective laser sintering. Int J Mach Tools Manuf 47(12–13):2040–2050. https://doi.org/10.1016/j.ijmachtools.2007.01.013

    Article  Google Scholar 

  25. Calleja A, Tabernero I, Ealo JA, Campa FJ, Lamikiz A, de Lacalle LNL (2014) Feed rate calculation algorithm for the homogeneous material deposition of blisk blades by 5-axis laser cladding. Int J Adv Manuf Technol 74(9–12):1219–1228. https://doi.org/10.1007/s00170-014-6057-3

    Article  Google Scholar 

  26. Fujii HT, Shimizu S, Sato YS, Kokawa H (2017) High-strain-rate deformation in ultrasonic additive manufacturing. Scr Mater 135:125–129. https://doi.org/10.1016/j.scriptamat.2016.12.030

    Article  Google Scholar 

  27. Feng X, Zhang Z, Cui X, Jin G, Zheng W, Liu H (2018) Additive manufactured closed-cell aluminum alloy foams via laser melting deposition process. Mater Lett 233:126–129. https://doi.org/10.1016/j.matlet.2018.08.146

    Article  Google Scholar 

  28. Al Faruque MA, Chhetri SR, Canedo A, Wan J (2016) Acoustic side-channel attacks on additive manufacturing systems. In: 2016 ACM/IEEE 7th international conference on cyber-physical systems (ICCPS). IEEE, pp 1–10

  29. Lee JP, Ye BU, Kim KN, Lee JW, Choi WJ, Baik JM (2017) 3D printed noise-cancelling triboelectric nanogenerator. Nano Energy 38:377–384. https://doi.org/10.1016/j.nanoen.2017.05.054

    Article  Google Scholar 

  30. Xu J, Wang K, Sheng H, Gao M, Zhang S, Tan J (2020) Energy efficiency optimization for ecological 3D printing based on adaptive multi-layer customization. J Clean Prod 245:118826. https://doi.org/10.1016/j.jclepro.2019.118826

    Article  Google Scholar 

  31. Xu J, Wang K, Zhang S, Yi G, Tan J, Luo S, Pang J (2020) Thermal deformation defect prediction for layered printing using convolutional generative adversarial network. Appl Sci 10(19):6860. https://doi.org/10.3390/app10196860

    Article  Google Scholar 

  32. Xu J, Gao M, Feng X, Su Z, Wang K, Zhang S, Tan J (2021) Support diminution design for layered manufacturing of manifold surface based on variable orientation tracking. J Print Addit Manuf 8(3):149–167. https://doi.org/10.1089/3dp.2020.0203

    Article  Google Scholar 

  33. Jinghua X, Xueqing F, Jun C, Shuyou Z (2020) Precision forward design for 3D printing using kinematic sensitivity via Jacobian matrix considering uncertainty. Int J Adv Manuf Technol 110(11–12):3257–3271. https://doi.org/10.1007/s00170-020-05940-4

    Article  Google Scholar 

Download references

Funding

This research was funded by the National Natural Science Foundation of China (Nos. 51935009; 51775494;51821093), Zhejiang key research and development project (Nos. 2019C01141; LGG21E050020), National key research and development project of China (No. 2018YFB1700701), Fundamental Research Funds for the Zhejiang Provincial Universities (No. 2021XZZX008).

Author information

Authors and Affiliations

Authors

Contributions

KW: methodology, experiment design, and paper writing. JX: validation. SZ: supervision. JT: funding acquisition. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Jinghua Xu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

The type of study is non-human subject research, and waived the need for informed consent.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Xu, J., Zhang, S. et al. Antivibration and energy efficiency design for large stroke additive manufacturing based on dynamic trajectory adaption. Int J Adv Manuf Technol 118, 3015–3034 (2022). https://doi.org/10.1007/s00170-021-08072-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-08072-5

Keywords

Navigation