Skip to main content

Advertisement

Log in

Artificial neural network modelling and optimization of elastic and an-elastic spring back in polymer parts produced through ISF

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Traditional polymer processing techniques results in thermal degradation of the desired mechanical properties of a component. Incremental sheet forming (ISF), an innovative flexible cold forming process, can avoid this issue. However, this type of cold processing suffers from serious drawback of spring back due to elastic recovery. Therefore, process control is mandatory to achieve the desired part accuracy. This requires employment of a conducive set of process parameters, thereby turning this into an optimization problem. Using statistical techniques, though beneficial, does not result in an acceptable mean squared error (MSE). In this paper, we explore the use of machine learning methods for error prediction and parameter optimization. Particularly, we propose to use the combination of genetic algorithm and artificial neural network hybrid model for optimized set of parameters that result in a greedy minimized shape error. Experiments on Polypropylene sheet show that the proposed approach results in better optimization compared to statistical technique in minimizing the MSE.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Included in the manuscript.

Code availability

Matlab built-in GA and ANN toolboxes.

References

  1. Chen L, He Y, Yang Y, Niu S, Ren H (2017) The research status and development trend of additive manufacturing technology. Int J Adv Manuf Technol 89(9–12):3651–3660

    Article  Google Scholar 

  2. Bikas H, Stavropoulos P, Chryssolouris G (2016) Additive manufacturing methods and modelling approaches: a critical review. Int J Adv Manuf Technol 83(1–4):389–405

    Article  Google Scholar 

  3. Huang SH, Liu P, Mokasdar A, Hou L (2013) Additive manufacturing and its societal impact: a literature review. Int J Adv Manuf Technol 67(5):1191–1203

    Article  Google Scholar 

  4. Jeswiet J, Micari F, Hirt G, Bramley A, Duflou J, Allwood J (2005) Asymmetric single point incremental forming of sheet metal. CIRP Ann 54(2):88–114

    Article  Google Scholar 

  5. Amino H, Lu Y, Ozawa S, Fukuda K, Maki T (2002) Dieless NC forming of automotive service panels. In: Proceedings of the conference on Advanced Techniques of Plasticity, pp. 1015–1020

  6. Ambrogio G, De Napoli L, Filice L, Gagliardi F, Muzzupappa M (2005) Application of Incremental Forming process for high customised medical product manufacturing. J Mater Process Technol 162:156–162

    Article  Google Scholar 

  7. Franzen V, Kwiatkowski L, Martins PAF, Tekkaya AE (2009) Single point incremental forming of PVC. J Mater Process Technol 209(1):462–469

    Article  Google Scholar 

  8. Franzen V, Kwiatkowski L, Neves J, Martins PAF, Tekkaya AE (2008) On the capability of single point incremental forming for manufacturing polymer sheet parts. Int Conf Technol Plast 2008:890–895

    Google Scholar 

  9. Le VS, Ghiotti A, Lucchetta G (2008) Preliminary studies on single point incremental forming for thermoplastic materials. Int J Mater Form 1(1):1179–1182

    Article  Google Scholar 

  10. Silva MB, Alves LM, Martins PAF (2010) Single point incremental forming of PVC: Experimental findings and theoretical interpretation. Eur J Mech A Solids 29(4):557–566

    Article  Google Scholar 

  11. Silva MB, Martinho TM, Martins PAF (2013) Incremental forming of hole-flanges in polymer sheets. Mater Manuf Process 28(3):330–335

    Article  Google Scholar 

  12. Bagudanch I, Garcia-Romeu ML, Centeno G, Elías-Zúñiga A, Ciurana J (2015) Forming force and temperature effects on single point incremental forming of polyvinylchloride. J Mater Process Technol 219:221–229

    Article  Google Scholar 

  13. Hussain G, Mahna A, Iqbal A (2016) Response surface analysis of cold formability of polymers in incremental sheet forming: effect of parameters and associated thermal softening. Int J Precis Eng Manuf 17(5):613–621

    Article  Google Scholar 

  14. Clavijo-Chaparro SL, Iturbe-Ek J, Lozano-Sánchez LM, Sustaita AO, Elías-Zúñiga A (2018) Plasticized and reinforced poly (methyl methacrylate) obtained by a dissolution-dispersion process for single point incremental forming: Enhanced formability towards the fabrication of cranial implants. Polym Test 68:39–45

    Article  Google Scholar 

  15. Lozano-Sánchez LM et al (2017) Mechanical and structural studies on single point incremental forming of polypropylene-MWCNTs composite sheets. J Mater Process Technol 242:218–227

    Article  Google Scholar 

  16. Martins PAF, Kwiatkowski L, Franzen V, Tekkaya AE, Kleiner M (2009) Single point incremental forming of polymers. CIRP Ann 58(1):229–232

    Article  Google Scholar 

  17. Edwards WL, Grimm TJ, Ragai I, Roth JT (2017) Optimum process parameters for springback reduction of single point incrementally formed polycarbonate. Procedia Manuf 10:329–338

    Article  Google Scholar 

  18. Davarpanah MA, Bansal S, Malhotra R (2017) Influence of single point incremental forming on mechanical properties and chain orientation in thermoplastic polymers. ASME. J Manuf Sci Eng 139(2):021012.

  19. Fu Z, Mo J, Han F, Gong P (2013) Tool path correction algorithm for single-point incremental forming of sheet metal. Int J Adv Manuf Technol 64(9–12):1239–1248

    Article  Google Scholar 

  20. Lu H, Kearney M, Li Y, Liu S, Daniel WJ, Meehan PA (2016) Model predictive control of incremental sheet forming for geometric accuracy improvement. Int J Adv Manuf Technol 82(9–12):1781–1794

    Article  Google Scholar 

  21. Lu H, Kearney M, Liu S, Daniel WJ, Meehan PA (2017) Two-directional toolpath correction in single-point incremental forming using model predictive control. Int J Adv Manuf Technol 91(1–4):91–106

    Article  Google Scholar 

  22. Hussain G, Ranjbar M, Hassanzadeh S (2017) Trade-off among mechanical properties and energy consumption in multi-pass friction stir processing of Al7075 alloy employing neural network–based genetic optimization. Proc Inst Mech Eng Part B J Eng Manuf 231(1):129–139

    Article  Google Scholar 

  23. Shamshirband S et al (2016) Estimating the diffuse solar radiation using a coupled support vector machine–wavelet transform model. Renewable and Sustainable Energy Reviews 56:428–435

    Article  Google Scholar 

  24. Hassoun M H (1995) Fundamentals of artificial neural networks. The MIT Press

  25. Drucker H, Burges CJ, Kaufman L, Smola AJ, Vapnik V (1997) Support vector regression machines. In: Advances in neural information processing systems 9, pp. 155–161

  26. Jain A, Nandakumar K, Ross A (2005) Score normalization in multimodal biometric systems. Pattern Recognit 38(12):2270–2285

    Article  Google Scholar 

  27. Hussain SF (2011) Bi-clustering gene expression data using co-similarity. In: International Conference on Advanced Data Mining and Applications, pp. 190–200

  28. Al Shalabi L, Shaaban Z (2006) Normalization as a preprocessing engine for data mining and the approach of preference matrix. In: 2006 International conference on dependability of computer systems, pp. 207–214

  29. Ma S et al (2020) Artificial neural network prediction of metastable zone widths in reactive crystallization of lithium carbonate. Ind Eng Chem Res 59(16):7765–7776

    Article  Google Scholar 

  30. Nasser IM, Abu-Naser SS (2019) Lung cancer detection using artificial neural network. Int J Eng Inf Syst 3(3):17–23

    Google Scholar 

  31. Saeed MQ, Hussain SF (2020) Arrhythmia diagnosis by using level-crossing ECG sampling and sub-bands features extraction for mobile healthcare. Sensors 20:8. https://doi.org/10.3390/s20082252

    Article  Google Scholar 

  32. Whitley D (1994) A genetic algorithm tutorial. Stat Comput 4(2):65–85

    Article  Google Scholar 

  33. Hussain SF, Iqbal S (2018) CCGA: Co-similarity based Co-clustering using genetic algorithm. Appl Soft Comput 72:30–42

    Article  Google Scholar 

  34. Hussain SF, Pervez A, Hussain M (2020) Co-clustering optimization using Artificial Bee Colony (ABC) algorithm. Appl Soft Comput 97(B):106725. https://doi.org/10.1016/j.asoc.2020.106725

  35. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    MATH  Google Scholar 

  36. Hussain SF (2019) A novel robust kernel for classifying high-dimensional data using Support Vector Machines. Expert Syst Applic 131:116–131

    Article  Google Scholar 

  37. Breiman L, FriedmanJ, Stone CJ, Olshen RA (1984) Classification and regression trees. CRC Press

  38. Paolella MS (2018) Linear Models and Time-Series Analysis: Regression, ANOVA, ARMA and GARCH. John Wiley & Sons

  39. Aiken LS, West SG, Pitts SC, Baraldi AN, Wurpts IC (2012) Multiple linear regression. Research Methods in Psychology IV. DATA ANALYSIS ISSUES Volume 2. https://doi.org/10.1002/9781118133880.hop202018

  40. Costa NR, Lourenço J, Pereira ZL (2011) Desirability function approach: a review and performance evaluation in adverse conditions. Chemometr Intell Lab Syst 107(2):234–244

    Article  Google Scholar 

Download references

Funding

Naila Rahman wishes to thank the Ghulam Ishaq Khan Institute of Engineering Sciences and Technology for supporting her MS research via a fully funded scholarship under its GA scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Fawad Hussain.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors are aware and approve to this publication.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, S.F., Hussain, G. & Rahman, N. Artificial neural network modelling and optimization of elastic and an-elastic spring back in polymer parts produced through ISF. Int J Adv Manuf Technol 118, 2163–2176 (2022). https://doi.org/10.1007/s00170-021-08054-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-08054-7

Keywords

Navigation