Skip to main content
Log in

Surface quality analysis of AZ31B Mg alloy sheet in ultrasonic-assisted warm single-point incremental forming

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

With a view to improving the surface quality of the magnesium (Mg) alloy at a warm temperature, the ultrasonic-assisted warm single-point incremental forming (SPIF) is proposed. The surface quality of the Mg alloy during the warm SPIF is primarily affected by two parts: the orange peel patterns of the non-contact surface and the scratches and adhesive wear of the contact surface. In this work, the surface quality of the AZ31B Mg alloy sheet parts at different forming temperatures and ultrasonic amplitudes is evaluated by examining the surface roughness and topography. The results show that the generation of orange peel patterns is significantly affected by temperature. In addition, scratches and adhesive wear of the contact surface increase with the rising temperature. After applying the ultrasonic vibration (UV), the quality of both the non-contact and the contact surfaces of the parts is significantly improved, but too large ultrasonic amplitude slightly reduces the surface quality. Moreover, the microstructural examination results show that UV has a great effect on dynamic recrystallization and grain refinement, which positively affects surface quality improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of data and material

This study is based only on data obtained using the methods described in this paper.

Code availability

Not applicable.

References

  1. Kojima Y, Kamado S (2005) Fundamental magnesium researches in japan. Mater Sci Forum 518:9–16. https://doi.org/10.4028/www.scientific.net/MSF.488-489.9

    Article  Google Scholar 

  2. Kawalla R, Ullmann M, Henseler T, Prahl U (2019) Magnesium twin-roll casting technology for flat and long products-state of the art and future. Mater Sci Forum 4559:1431–1436. https://doi.org/10.4028/www.scientific.net/MSF.941.1431

    Article  Google Scholar 

  3. Palumbo G, Sorgente D, Tricarico L (2008) The design of a formability test in warm conditions for an AZ31 magnesium alloy avoiding friction and strain rate effects. Int J Mach Tool Manuf 48(14):1535–1545. https://doi.org/10.1016/j.ijmachtools.2008.06.010

    Article  Google Scholar 

  4. Zhang KF, Yin DL, Wu DZ (2006) Formability of AZ31 magnesium alloy sheets at warm working conditions. Int J Mach Tool Manuf 46(11):1276–1280. https://doi.org/10.1016/j.ijmachtools.2006.01.014

    Article  Google Scholar 

  5. Campanella D, Buffa G, Valvo EL, Fratini L (2021) A numerical approach for the modelling of forming limits in hot incremental forming of AZ31 magnesium alloy. Int J Adv Manuf Technol (prepublish). https://doi.org/10.1007/S00170-021-07059-6

    Article  Google Scholar 

  6. Su CJ, Zhao ZX, Lv YT, Wang R, Wang Q, Wang MY (2019) Effect of process parameters on plastic formability and microstructures of magnesium alloy in single point incremental forming. J Mater Eng Perform 28(2):7737–7755. https://doi.org/10.1007/s11665-019-04460-x

    Article  Google Scholar 

  7. Leonhardt A, Kurz G, Victoria-Hernández J, Kräusel V, Landgrebe D, Letzig D (2018) Experimental study on incremental sheet forming of magnesium alloy AZ31 with hot air heating. Procedia Manuf 15:1192–1199. https://doi.org/10.1016/j.promfg.2018.07.369

    Article  Google Scholar 

  8. Liao J, Liu JH, Zhang LX, Xue X (2020) Influence of heating mode on orange peel patterns in warm incremental forming of magnesium alloy. Procedia Manuf 5:5–10. https://doi.org/10.1016/j.promfg.2020.08.002

    Article  Google Scholar 

  9. Davis JR (1992) ASM materials engineering dictionary. Geauga: ASM Int pp 298.

  10. Carter JT, Krajewski PE, Verma R (2008) The hot blow forming of AZ31 Mg sheet: formability assessment and application development. JOM 60(11):77–81. https://doi.org/10.1007/s11837-008-0153-5

    Article  Google Scholar 

  11. Antoniswamy AR, Carpenter AJ, Carter JT, Hector LG, Tale-Ff EM (2013) The influence of deformation mechanisms on rupture of AZ31B magnesium alloy sheet at elevated temperatures. Magnesium Technol 34:211–215

    Google Scholar 

  12. Duflou JR, Callebaut B, Verbert J, De Baerdemaeker H (2007) Improved SPIF performance through dynamic local heating. Int J Mach Tool Manuf 48(5):543–549. https://doi.org/10.1016/j.ijmachtools.2007.08.010

    Article  Google Scholar 

  13. Xu DK, Lu B, Cao TT, Zhang H, Chen J, Long H, Cao J (2016) Enhancement of process capabilities in electrically-assisted double sided incremental forming. Mater Design 92:268–280. https://doi.org/10.1016/j.matdes.2015.12.009

    Article  Google Scholar 

  14. Zhang QL, Xiao FG, Guo HL, Li CS, Gao L, Guo XW, Han WD, Bondarev AB (2009) Warm negative incremental forming of magnesium alloy AZ31 sheet: new lubricating method. J Mater Process Technol 210(2):323–329. https://doi.org/10.1016/j.jmatprotec.2009.09.018

    Article  Google Scholar 

  15. Göttmann A, Diettrich J, Bergweiler G, Bambach M, Hirt G, Loosen P, Poprawe R (2011) Laser-assisted asymmetric incremental sheet forming of titanium sheet metal parts. Prod Eng 5(3):263–271. https://doi.org/10.1007/s11740-011-0299-9

    Article  Google Scholar 

  16. Mulay A, Ben S, Ismail S, Kocanda A (2017) Experimental investigations into the effects of SPIF forming conditions on surface roughness and formability by design of experiments. J Braz Soc Mech Sci Eng 39(10):3997–4010. https://doi.org/10.1007/s40430-016-0703-7

    Article  Google Scholar 

  17. Ajay K, Vishal G (2018) Experimental investigation and optimization of surface roughness in negative incremental forming. Measurement 131:419–430. https://doi.org/10.1016/j.measurement.2018.08.078

    Article  Google Scholar 

  18. Wang ZH, Cai S, Chen J (2020) Experimental investigations on friction stir assisted single point incremental forming of low-ductility aluminum alloy sheet for higher formability with reasonable surface quality. J Mater Process Technol 277:116488. https://doi.org/10.1016/j.jmatprotec.2019.116488

    Article  Google Scholar 

  19. Attanasio A, Ceretti E, Giardini C (2006) Optimization of tool path in two points incremental forming. J Mater Process Technol 177(1–3):409–412. https://doi.org/10.1016/j.jmatprotec.2006.04.047

    Article  Google Scholar 

  20. Diabb J, Rodríguez CA, Mamidi N, Sandoval JA, Taha-Tijerina J, Martínez-Romero O, Elías-Zúñiga A (2017) Study of lubrication and wear in single point incremental sheet forming (SPIF) process using vegetable oil nanolubricants. Wear 376–377:777–785. https://doi.org/10.1016/j.wear.2017.01.045

    Article  Google Scholar 

  21. Xu CX, Li YL, Wang ZJ, Cheng ZN, Liu FY (2020) The influence of self-lubricating coating during incremental sheet forming of TA1 sheet. Int J Adv Manuf Technol 110(9):2465–2477. https://doi.org/10.1007/s00170-020-06013-2

    Article  Google Scholar 

  22. Sisodia V, Kumar S (2018) Influence of process parameters on surface roughness in single point incremental forming using dummy sheet. IOP Conf Ser Mater Sci Eng 361 (1). https://doi.org/10.1088/1757-899X/361/1/012003

  23. Li XQ, Han K, Song X, Wang H, Li DS, Li YL, Li Q (2020) Experimental and numerical investigation on surface quality for two-point incremental sheet forming with interpolator. Chin J Aeronaut 33 (10). https://doi.org/10.1016/j.cja.2019.11.011

  24. Amini S, Gollo AH, Paktinat H (2017) An investigation of conventional and ultrasonic-assisted incremental forming of annealed AA1050 sheet. Int J Adv Manuf Technol 90(5–8):1569–1578

    Article  Google Scholar 

  25. Long YY, Li YL, Sun J, Ille I, Li JF, Twiefel J (2018) Effects of process parameters on force reduction and temperature variation during ultrasonic assisted incremental sheet forming process. Int J Adv Manuf Technol 97(1–4):13–24. https://doi.org/10.1007/s00170-016-9458-7

    Article  Google Scholar 

  26. Li Y, Zhai W, Wang Z, Li X, Sun L, Li J, Zhao G (2020) Investigation on the material flow and deformation behavior during ultrasonic-assisted incremental forming of straight grooves. J Mater Res Technol 9(1):433–454. https://doi.org/10.1016/j.jmrt.2019.10.072

    Article  Google Scholar 

  27. Zhai WD, Li YL, Cheng ZN, Sun LL, Li FY, Li JF (2020) Investigation on the forming force and surface quality during ultrasonic-assisted incremental sheet forming process. Int J Adv Manuf Technol 106(7):2703–2719. https://doi.org/10.1007/s00170-019-04870-0

    Article  Google Scholar 

  28. Sakhtemanian MR, Honarpisheh M, Amini S (2019) A novel material modeling technique in the single-point incremental forming assisted by the ultrasonic vibration of low carbon steel/commercially pure titanium bimetal sheet. Int J Adv Manuf Technol 102(1):473–486. https://doi.org/10.1007/s00170-018-3148-6

    Article  Google Scholar 

  29. Tawakoli T, Azarhoushang B (2008) Influences of ultrasonic vibrations on dry grinding of soft steel. Int J Mach Tool Manuf 48(14):1585–1591. https://doi.org/10.1016/j.ijmachtools.2008.05.010

    Article  Google Scholar 

  30. Zhao QL, Sun ZY, Guo B (2016) Material removal mechanism in ultrasonic vibration assisted polishing of micro cylindrical surface on SiC. Int J Mach Tool Manuf 103:28–39. https://doi.org/10.1016/j.ijmachtools.2016.01.003

    Article  Google Scholar 

  31. Brehl DE, Dow TA (2007) Review of vibration-assisted machining. Precis Eng 2(3):153–172. https://doi.org/10.1016/j.precisioneng.2007.08.003

    Article  Google Scholar 

  32. Yin L, Zhao B, Huo BJ, Bie WB, Zhao CY (2021) Analytical modeling of grinding force and experimental study on ultrasonic-assisted forming grinding gear. Int J Adv Manuf Technol 114(11–12):3657–3673. https://doi.org/10.1007/S00170-021-07086-3

    Article  Google Scholar 

  33. Zhang HR, Chu XR, Lin SX, Bai HW, Sun J (2021) Temperature influence on formability and microstructure of AZ31B during electric hot temperature-controlled incremental forming. Materials 14(4):810. https://doi.org/10.3390/MA14040810

    Article  Google Scholar 

  34. Chang ZD, Chen J (2019) Analytical model and experimental validation of surface roughness for incremental sheet metal forming parts. Int J Mach Tool Manuf 146:103453. https://doi.org/10.1016/j.ijmachtools.2019.103453

    Article  Google Scholar 

  35. Kubo S, Kato K (1998) Effect of arc discharge on wear rate of Cu-impregnated carbon strip in unlubricated sliding against Cu trolley under electric current. Wear 21(2):172–178. https://doi.org/10.1016/S0043-1648(97)00184-1

    Article  Google Scholar 

  36. Formisano A, Durante M, Boccarusso L, Astarita A (2017) The influence of thermal oxidation and tool-sheet contact conditions on the formability and the surface quality of incrementally formed grade 1 titanium thin sheets. Int J Adv Manuf Technol 93(9–12):3723–3732. https://doi.org/10.1007/s00170-017-0805-0

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express many thanks to Mr. Jianhua Liu for his help of some experimental work and suggestions.

Funding

This work received the financial support by the National Natural Science Foundation of China (No. 51805087).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the generation and analysis of experimental data and the development of the manuscript.

Corresponding author

Correspondence to Xin Xue.

Ethics declarations

Ethics approval

All authors declare that his article does not have any academic ethics issues and strictly follows the journal submission rules.

Consent to participate

All authors agree to participate in this research work.

Consent for publication

All authors agree to publish this work.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, J., Zeng, X. & Xue, X. Surface quality analysis of AZ31B Mg alloy sheet in ultrasonic-assisted warm single-point incremental forming. Int J Adv Manuf Technol 118, 1397–1410 (2022). https://doi.org/10.1007/s00170-021-08045-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-08045-8

Keywords

Navigation