Skip to main content
Log in

Wire EDM failure prediction and process control based on sensor fusion and pulse train analysis

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The study aims to develop a neural network classification model to predict machining failures during wire electric discharge machining. Also, a process control algorithm retunes the process parameters based on the remaining useful time before failure. In the proposed methodology, an artificial neural network (ANN) classifier receives four in-process discharge characteristics as input. These extracted features are discharge energy, spark frequency, open spark ratio, and short circuit ratio. Output classes are labeled normal machining, wire breakage, and spark absence. One hundred eight experiments were conducted according to a full factorial design to train the classifier model, with 90% classification accuracy.Parallelly, another trained ANN model predicts the remaining useful time before failure, based on which process parameters are retuned to restore the machining stability. The algorithm was successful in ensuring continuous failure-free machining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All data is available in the manuscript.

References

  1. Ho KH, Newman ST, Rahimifard S, Allen RD (2004) State of the art in wire electrical discharge machining (WEDM). Int J Mach Tools Manuf 44:1247–1259. https://doi.org/10.1016/j.ijmachtools.2004.04.017

    Article  Google Scholar 

  2. Mandal A, Dixit AR (2014) State of art in wire electrical discharge machining process and performance. Int J Mach Mach Mater 16:1. https://doi.org/10.1504/IJMMM.2014.063918

    Article  Google Scholar 

  3. Rajurkar KP, Wang WM (1991) On-line monitor and control for wire breakage in WEDM. Ann CIRP 40:219–222. https://doi.org/10.1016/j.procir.2017.12.059

    Article  Google Scholar 

  4. Kwon S, Yang MY (2006) The benefits of using instantaneous energy to monitor the transient state of the wire EDM process. Int J Adv Manuf Technol 27:930–938. https://doi.org/10.1007/s00170-004-2252-y

    Article  Google Scholar 

  5. Yan MT, Liao YS (1996) A self-learning Fuzzy controller for wire rupture prevention in WEDM. Int J Adv Manuf Technol 11:267–275. https://doi.org/10.1007/BF01351284

    Article  Google Scholar 

  6. Liao YS, Woo JC (2000) Design of a fuzzy controller for the adaptive control of WEDM process. Int J Mach Tools Manuf 40:2293–2307. https://doi.org/10.1016/S0890-6955(00)00036-5

    Article  Google Scholar 

  7. Bufardi A, Akten O, Arif M, Xirouchakis P, Perez R (2017) Towards zero defect manufacturing with a combined online-offline fuzzy-nets approach in wire electrical discharge machining. WSEAS Transactions on Environment and Development 13:401–409.

  8. Abhilash PM, Chakradhar D (2020) ANFIS modelling of mean gap voltage variation to predict wire breakages during wire EDM of Inconel 718. CIRP J Manuf Sci Technol 31:153–164. https://doi.org/10.1016/j.cirpj.2020.10.007

    Article  Google Scholar 

  9. Abhilash PM, Chakradhar D (2021) Sustainability improvement of WEDM process by analysing and classifying wire rupture using kernel - based naive Bayes classifier. J Brazilian Soc Mech Sci Eng:43. https://doi.org/10.1007/s40430-021-02805-z

  10. Janardhan V, Samuel GL (2010) Pulse train data analysis to investigate the effect of machining parameters on the performance of wire electro discharge turning (WEDT) process. Int J Mach Tools Manuf 50:775–788. https://doi.org/10.1016/j.ijmachtools.2010.05.008

    Article  Google Scholar 

  11. Yan MT, Hsieh PH (2015) An on-line monitoring system for wire electrical discharge turning process. Proc Inst Mech Eng Part B J Eng Manuf 229:1945–1954. https://doi.org/10.1177/0954405414543488

    Article  Google Scholar 

  12. Oßwald K, Lochmahr I, Schulze H-P, Kröning O (2018) Automated analysis of pulse types in high speed wire EDM. Procedia CIRP 68:796–801. https://doi.org/10.1016/j.procir.2017.12.157

    Article  Google Scholar 

  13. Conde A, Sanchez JA, Plaza S, Ostolaza M, de la Puerta I, Li Z (2018) Experimental measurement of wire-lag effect and its relation with signal classification on wire EDM. Procedia CIRP 68:132–137. https://doi.org/10.1016/j.procir.2017.12.035

    Article  Google Scholar 

  14. Cabanes I, Portillo E, Marcos M, Sánchez JA (2008) An industrial application for on-line detection of instability and wire breakage in wire EDM. J Mater Process Technol 195:101–109. https://doi.org/10.1016/j.jmatprotec.2007.04.125

    Article  Google Scholar 

  15. Klocke F, Welling D, Klink A, Perez R (2014) Quality assessment through in-process monitoring of wire-EDM for fir tree slot production. New Prod Technol Aerosp Ind - 5th Mach Innov Conf (MIC 2014)-Procedia CIRP 24:97–102. https://doi.org/10.1016/j.procir.2014.07.136

    Article  Google Scholar 

  16. Caggiano A, Perez R, Segreto T, Teti R, Xirouchakis P (2016) Advanced sensor signal feature extraction and pattern recognition for wire EDM process monitoring. Procedia CIRP 42:34–39. https://doi.org/10.1016/j.procir.2016.02.181

    Article  Google Scholar 

  17. Caggiano A, Teti R, Perez R, Xirouchakis P (2015) Wire EDM monitoring for zero-defect manufacturing based on advanced sensor signal processing. Procedia CIRP 33:315–320. https://doi.org/10.1016/j.procir.2015.06.065

    Article  Google Scholar 

  18. Bergs T, Tombul U, Herrig T, Olivier M, Klink A, Klocke F (2018) Analysis of characteristic process parameters to identify unstable process conditions during wire EDM. Procedia Manuf 18:138–145. https://doi.org/10.1016/j.promfg.2018.11.018

    Article  Google Scholar 

  19. Rajeswari R, Shunmugam MS (2019) Investigations into process mechanics of rough and finish die sinking EDM using pulse train analysis. Int J Adv Manuf Technol 100:1945–1964. https://doi.org/10.1007/s00170-018-2701-7

    Article  Google Scholar 

  20. Marrocco V, Modica F, Fassi I (2019) Analysis of discharge pulses in micro-EDM milling of Si3N4-TiN composite workpiece by means of power spectral density (PSD). J Manuf Process 43:112–118. https://doi.org/10.1016/j.jmapro.2019.05.017

    Article  Google Scholar 

  21. Marrocco V, Modica F, Bellantone V, Medri V, Fassi I (2020) Pulse-type influence on the micro-edm milling machinability of si3 n4 –tin workpieces. Micromachines 11. https://doi.org/10.3390/mi11100932

  22. Mwangi JW, Bui VD, Thüsing K, Hahn S, Wagner MFX, Schubert A (2020) Characterization of the arcing phenomenon in micro-EDM and its effect on key mechanical properties of medical-grade Nitinol. J Mater Process Technol 275:116334. https://doi.org/10.1016/j.jmatprotec.2019.116334

    Article  Google Scholar 

  23. Mendes LA, Amorim FL, Weingaertner WL (2014) Automated system for the measurement of spark current and electric voltage in wire EDM performance. J Brazilian Soc Mech Sci Eng 37:123–131. https://doi.org/10.1007/s40430-014-0171-x

    Article  Google Scholar 

  24. Zhidong L, Haoran C, Huijun P, Mingbo Q, Zongjun T (2014) Automatic control of WEDM servo for silicon processing using current pulse probability detection. Int J Adv Manuf Technol 76:367–374. https://doi.org/10.1007/s00170-014-6252-2

    Article  Google Scholar 

  25. Thakur DG, Ramamoorthy B, Vijayaraghavan L (2009) Study on the machinability characteristics of superalloy Inconel 718 during high speed turning. Mater Des 30:1718–1725. https://doi.org/10.1016/j.matdes.2008.07.011

    Article  Google Scholar 

  26. Reed RC (2006) The superalloys fundamentals and applications. Cambridge University Press

    Book  Google Scholar 

  27. Sargent DJ (2001) Comparison of artificial neural networks with other statistical approaches: Results from medical data sets. Cancer 91:1636–1642. https://doi.org/10.1002/1097-0142(20010415)91:8+<1636::aid-cncr1176>3.0.co;2-d

  28. P. M., Abhilash D., Chakradhar (2020) Prediction and analysis of process failures by ANN classification during wire-EDM of Inconel 718. Advances in Manufacturing 8(4) 519-536 https://doi.org/10.1007/s40436-020-00327-w

  29. Abhilash PM, Chakradhar D (2021) Failure detection and control for wire EDM process using multiple sensors. CIRP J Manuf Sci Technol 33:315–326. https://doi.org/10.1016/j.cirpj.2021.04.009

    Article  Google Scholar 

  30. Arunachalam C, Aulia M, Bozkurt B, Eubank PT (2001) Wire vibration, bowing, and breakage in wire electrical discharge machining. J Appl Phys 89:4255–4262. https://doi.org/10.1063/1.1355281

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Central Instrumentation Facility (CIF), Indian Institute of Technology Palakkad for providing the test facilities.

Code availability

Not applicable

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhilash P M.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abhilash, P., Chakradhar, D. Wire EDM failure prediction and process control based on sensor fusion and pulse train analysis. Int J Adv Manuf Technol 118, 1453–1467 (2022). https://doi.org/10.1007/s00170-021-07974-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07974-8

Keywords

Navigation