Skip to main content
Log in

A novel error equivalence model on the kinematic error of the linear axis of high-end machine tool

  • Application
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The kinematic errors of the linear axis play a key role in machining precision of high-end CNC (computer numerical control) machine tool. The quantification of error relationship is still an urgent problem to be solved in the assembly process of the linear axis, especially considering the effect of the elastic deformation of rollers. In order to obtain the kinematic errors of the linear axis of machine tool, a systematic error equivalence model of slider is proposed. The linear axis contains the base, the linear guide rail, and carriage. Firstly, the geometric errors of assembly surface of linear guide rail are represented by small displacement torsor. Then, according to the theory of different motion of robots, the error equivalence model of a single slider is established, namely the geometric errors of assembly surface of linear guide rail and the pose error of slider are equivalent to the elastic deformation of roller. Based on the principle of vector summation, the kinematic error of a single slider is mapped to the carriage, and the kinematic error of the linear axis is obtained. At the same time, experiments validation of kinematic error model of the linear axis is carried out. It is indicated that the proposed model is accurate and feasible. The analysis of key design parameters shows that the proposed model can provide an accurate guidance for the manufacturing and operation performance of the linear axis in quantification, and a more effective reference for the engineers at the design and assembly stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Davidson JK, Mujezinovic A, Shah JJ (2004) A new mathematical model for geometric tolerances as applied to polygonal faces. J Mech Des 124(4):609–622. https://doi.org/10.1115/1.1497362

    Article  Google Scholar 

  2. Jaishankar LN, Davidson JK, Shah JJ (2013) Tolerance analysis of parallel assemblies using Tolerance-Maps® and a functional map derived from induced deformations. Dissertations & Theses –Gradworks, V03BT03A008

  3. Desrochers A, Ghie W, Laperriere L (2003) Application of a unified Jacobian-Torsor model for tolerance analysis. J Comput Inf Sci Eng 3(1):2–14. https://doi.org/10.1115/1.1573235

    Article  MATH  Google Scholar 

  4. Guo JK, Hong J, Yang ZH, Wang Y (2013) A tolerance analysis method for rotating machinery. Proc Cirp 10:77–83. https://doi.org/10.1016/j.procir.2020.04.036

    Article  Google Scholar 

  5. Asante JN (2013) A constraint-based tolerance analysis in a multi-operation single setup and multi-operation multi-setup part– fixture assembly. Int J Adv Manuf Technol 68(5-8):1001–1014. https://doi.org/10.1007/s00170-013-4891-3

    Article  Google Scholar 

  6. Jin S, Chen H, Li ZM, Lai XM (2015) A small displacement torsor model for 3D tolerance analysis of conical structures. Proc Inst Mech Eng Part C-J Eng Mech 229(14):2514–2523. https://doi.org/10.1177/0954406214560781

    Article  Google Scholar 

  7. He G, Sun G, Zhang H, Huang C, Zhang D (2017) Hierarchical error model to estimate motion error of linear motion bearing table. Int J Adv Manuf Technol 93(5-8):1915–1927. https://doi.org/10.1007/s00170-017-0635-0

    Article  Google Scholar 

  8. Zha J, Lv D, Jia Q, Chen Y (2016) Motion straightness of hydrostatic guideways considering the ratio of pad center spacing to guide rail profile error wavelength. Int J Adv Manuf Technol 82(9-12):2065–2073. https://doi.org/10.1007/s00170-015-7515-2

    Article  Google Scholar 

  9. Xue F, Zhao W, Chen Y, Wang Z (2012) Research on error averaging effect of hydrostatic guideways. Precis Eng-J Int Soc Precis Eng Nanotechnol 36(1):84–90. https://doi.org/10.1016/j.precisioneng.2011.07.007

    Article  Google Scholar 

  10. Fan J, Tao H, Wu C, Pan R, Tang Y, Li Z (2018) Kinematic errors prediction for multi-axis machine tools’ guideways based on tolerance. Int J Adv Manuf Technol 98(5-8):1131–1144. https://doi.org/10.1007/s00170-018-2335-9

    Article  Google Scholar 

  11. Zhong X, Liu H, Mao X, Li B, He S (2019) Influence and error transfer in assembly process of geometric errors of a translational axis on volumetric error in machine tools. Measurement 140:140450–140461. https://doi.org/10.1016/j.measurement.2019.04.032

    Article  Google Scholar 

  12. Zhang P, Chen Y, Zhang C, Zha J, Wang T (2018) Influence of geometric errors of guide rails and table on motion errors of hydrostatic guideways under quasi-static condition. Int J Mach Tools Manuf 125:12555–12567. https://doi.org/10.1016/j.ijmachtools.2017.10.006

    Article  Google Scholar 

  13. Chlebus E, Dybala B (1999) Modelling and calculation of properties of sliding guideways. Int J Mach Tools Manuf 39(12):1823–1839. https://doi.org/10.1016/S0890-6955(99)00041-3

    Article  Google Scholar 

  14. Majda P (2012) Modeling of geometric errors of linear guideway and their influence on joint kinematic error in machine tools. Precis Eng-J Int Soc Precis Eng Nanotechnol 36(3):369–378. https://doi.org/10.1016/j.precisioneng.2012.02.001

    Article  Google Scholar 

  15. Shimizu S (1998) Stiffness analysis of precision machinery elements: stiffness analysis of linear motion rolling guide. J Jpn Soc Precision Eng 64(11):1573–1576. https://doi.org/10.2493/jjspe.64.1573

    Article  Google Scholar 

  16. Ohta H, Tanaka K (2010) Vertical stiffnesses of preloaded linear guideway type ball bearings incorporating the flexibility of the carriage and rail. J Tribol-Trans ASME 132(1):1–9. https://doi.org/10.1115/1.4000277

    Article  Google Scholar 

  17. Jeong J, Kang E, Jeong J (2014) Equivalent stiffness modeling of linear motion guideways for stage systems. Int J Precis Eng Manuf 15(9):1987–1993. https://doi.org/10.1007/s12541-014-0555-y

    Article  Google Scholar 

  18. Zou HT, Wang BL (2015) Investigation of the contact stiffness variation of linear rolling guides due to the effects of friction and wear during operation. Tribol Int 92:472–484. https://doi.org/10.1016/j.triboint.2015.07.005

    Article  Google Scholar 

  19. Ma Y, Li Y (2019) Motion error of rolling guide based on uncertainty of geometric error. Chin J Mech Eng 55(5):11–18. https://doi.org/10.3901/JME.2019.05.011

    Article  Google Scholar 

  20. Khim G, Oh JS, Park CH (2014) Analysis of 5-DOF motion errors influenced by the guide rails of an aerostatic linear motion stage. Int J Precis Eng Manuf 15(2):283–290. https://doi.org/10.1007/s12541-014-0336-7

    Article  Google Scholar 

  21. Khim G, Park CH, Oh JS (2015) A method of calculating motion error in a linear motion bearing stage. Sci World J 2015:20151–20110. https://doi.org/10.1155/2015/696417

    Article  Google Scholar 

  22. Kim GH, Han JA, Lee S (2014) Motion error estimation of slide table on the consideration of guide parallelism and pad deflection. Int J Precis Eng Manuf 15(9):1935–1946. https://doi.org/10.1007/s12541-014-0548-x

    Article  Google Scholar 

  23. Ekinci TO, Mayer JRR (2007) Relationships between straightness and angular kinematic errors in machines. Int J Mach Tools Manuf 47(12-13):1997–2004. https://doi.org/10.1016/j.ijmachtools.2007.02.002

    Article  Google Scholar 

  24. Onat Ekinci T, Mayer JRR, Cloutier GM (2009) Investigation of accuracy of aerostatic guideways. Int J Mach Tools Manuf 49(6):478–487. https://doi.org/10.1016/j.ijmachtools.2009.01.001

    Article  Google Scholar 

  25. Khim G, Park CH, Shamoto E, Kim SW (2011) Prediction and compensation of motion accuracy in a linear motion bearing table. Precis Eng-J Int Soc Precis Eng Nanotechnol 35(3):393–399. https://doi.org/10.1016/j.precisioneng.2010.12.006

    Article  Google Scholar 

  26. Barus C (1900) A treatise on the theory of screws. Science 12(313):1001–1003

    Article  Google Scholar 

  27. Bourdet P, Mathieu L, Lartigue C, Ballu A (1996) The concept of the small displacement torsor in metrology. Adv Appl Math 40:110–122

    Google Scholar 

  28. Ding S, Jin S, Li Z, Chen H (2019) Multistage rotational optimization using unified Jacobian-torsor model in aero-engine assembly. Proc Inst Mech Eng Part B-J Eng Manuf 233(1):251–266. https://doi.org/10.1177/0954405417703431

    Article  Google Scholar 

  29. Alain D, Walid G, Luc LR (2003) Application of a unified jacobian-torsor model for tolerance analysis. J Comput Inf Sci Eng 3(1):2–14. https://doi.org/10.1115/1.1573235

    Article  Google Scholar 

  30. Zhong X, Yang R, Zhou B (2003) Accuracy analysis of assembly success rate with Monte Carlo simulations. J DongHua Univer 20(4):128–131. https://doi.org/10.3969/j.issn.1672-5220.2003.04.027

    Article  Google Scholar 

  31. Jia Z, Wang F (2011) Foundation of machine manufacturing technology. Science Press, Beijing

    Google Scholar 

  32. Dunaj P, Berczyński S, Pawełko P, Grządziel Z, Chodźko M (2019) Static condensation in modeling roller guides with preload. Arch Civ Mech Eng 19(4):1072–1082. https://doi.org/10.1016/j.acme.2019.06.005

    Article  Google Scholar 

  33. Johnson KL (1985) Contact mechanics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  34. Tedric AH, Michael NK (1991) Rolling bearing analysis. Wiley, New York

    Google Scholar 

  35. Murray RM, Li Z, Sastry SS (1994) A mathematical introduction to robotic manipulation, CRC Press

  36. Dunaj P, Dolata M, Powalka B, Pawelko P, Berczynski S (2021) Design of an ultra-light portable machine tool. IEEE Access 9:943837–943844. https://doi.org/10.1109/ACCESS.2021.3066690

    Article  Google Scholar 

  37. Liu S, Jin S (2020) Predicting milling force variation in time and space domain for multi-toothed face milling. Int J Adv Manuf Technol 108:2269–2283. https://doi.org/10.1007/s00170-020-05319-5

    Article  Google Scholar 

  38. Goswami DY (2004) The CRC handbook of mechanical engineering, CRC press

  39. Yu W, Delun W, Zhi W, Huimin D, Shudong Y (2016) The kinematic invariants in testing error motion of machine tool linear axes. Mech Mach Sci 408:1525–1540. https://doi.org/10.1007/978-981-10-2875-5_121

    Article  Google Scholar 

  40. ISO 230-1 (2012) Test code for machine tools—part 1: geometric accuracy of machines operating under no-load or quasi-static conditions, pp 1–11

  41. Pawełko P, Berczyński S, Grządziel Z (2014) Modeling roller guides with preload. Arch Civ Mech Eng 14(4):691–699. https://doi.org/10.1016/j.acme.2013.12.002

    Article  Google Scholar 

Download references

Funding

This work is provided the financial support by the National Science and Technology major project (No. 2017ZX04016001) and the National Natural Science Foundation of China (NSFC No. 51775346).

Author information

Authors and Affiliations

Authors

Contributions

Xinxin LI: Conceptualization, Methodology, Software, Validation, Visualization, Writing—original draft, Writing—review and editing

Zhimin LI: Conceptualization, Methodology, Validation, Visualization, Supervision, Writing—review and editing

Sun JIN: Conceptualization, Supervision

Jichang ZHANG: Conceptualization, Supervision

Siyi DING: Conceptualization, Software

Zhihua NIU: Conceptualization, Visualization

Corresponding author

Correspondence to Zhimin LI.

Ethics declarations

Ethical approval

Yes.

Consent to participate

Yes, the authors consent to participate.

Consent for publication

Yes, the authors consent to publish.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LI, ., LI, Z., JIN, S. et al. A novel error equivalence model on the kinematic error of the linear axis of high-end machine tool. Int J Adv Manuf Technol 118, 2759–2785 (2022). https://doi.org/10.1007/s00170-021-07941-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07941-3

Keywords

Navigation