Skip to main content
Log in

Dissimilar welding of aluminum alloys 2024 T3 and 7075 T6 by TIG process with double tungsten electrodes

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The aim of this work is to study the metallurgical and mechanical properties of dissimilar assemblies of 2024 T3 and 7075 T6 structural hardening aluminum alloy by the TIG twine electrode arc welding process. It will include a weld performed according to optimized welding parameters followed by a study of the macroscopic and microscopic evolution of the dissimilar assembly (2024-7075) using optical and scanning electron microscopy (SEM); in addition, the phase compositions were analyzed with an energy dispersive spectrometer (EDS). Tensile and microhardness tests were performed. The tensile fracture was observed by SEM. This paper suggests that when the double tungsten electrode TIG welding is used, a stable arc has been formed with a good bead appearance. The heat dissipated by the arc generates several zones (molten zone (WZ), bonding zones (LZ), heat-affected zones (HAZ)) with different microstructures or precipitates of the type θ (Al2 Cu), S (Al2 Cu, Mg) and η (Mg Zn2), S (Al2 Cu Mg) are formed in the heat-affected zone (HAZ) of base metals 2024 and 7075 respectively. The microhardness is lower in the molten zone and higher in the heat-affected zone of 7075 T6 alloy, which cried out an embrittlement and a 44% and 37% drop in the tensile strength of 7075 T6 and 2024 T3 base metals respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All the data have been presented in the manuscript.

References

  1. Toma CM (2012) Maîtrise des interfaces hétérogènes lors d’une opération de soudo-brasage: application au couple aluminium-magnésium (Doctoral dissertation, Dijon).

  2. Troeger LP, Starke EA Jr (2000) Microstructural and mechanical characterization of a superplastic 6xxx aluminum alloy. Mater Sci Eng A 277(1-2):102–113. https://doi.org/10.1016/S0921-5093(99)00543-2

    Article  Google Scholar 

  3. Al-Roubaiy AO, Nabat SM, Batako AD (2014) Experimental and theoretical analysis of friction stir welding of Al–Cu joints. Int J Adv Manuf Technol 71(9):1631–1642. https://doi.org/10.1007/s00170-013-5563-z

    Article  Google Scholar 

  4. Sheikhi M, Ghaini FM, Assadi H (2015) Prediction of solidification cracking in pulsed laser welding of 2024 aluminum alloy. Acta Mater 82:491–502. https://doi.org/10.1016/j.actamat.2014.09.002

    Article  Google Scholar 

  5. Caiazzo F, Alfieri V, Cardaropoli F, Sergi V (2013) Butt autogenous laser welding of AA 2024 aluminium alloy thin sheets with a Yb: YAG disk laser. Int J Adv Manuf Technol 67(9):2157–2169. https://doi.org/10.1007/s00170-012-4637-7

    Article  Google Scholar 

  6. Cho J, Lee JJ, Bae SH (2015) Heat input analysis of variable polarity arc welding of aluminum. Int J Adv Manuf Technol 81(5):1273–1280. https://doi.org/10.1007/s00170-015-7292-y

    Article  Google Scholar 

  7. Bai JY, Fan CL, Yang CL, Dong BL (2016) Effects of thermal cycles on microstructure evolution of 2219-Al during GTA-additive manufacturing. Int J Adv Manuf Technol 87(9):2615–2623. https://doi.org/10.1007/s00170-016-8633-1

    Article  Google Scholar 

  8. Wang JB, Nishimura H, Katayama S, Mizutani M (2013) Welding of aluminium alloy by using filler-added laser-arc hybrid welding process. Weld Int 27(2):98–108. https://doi.org/10.1080/09507116.2011.600013

    Article  Google Scholar 

  9. Kasman Ş, Yenier Z (2014) Analyzing dissimilar friction stir welding of AA5754/AA7075. Int J Adv Manuf Technol 70(1-4):145–156. https://doi.org/10.1007/s00170-013-5256-7

    Article  Google Scholar 

  10. Song Y, Yang X, Cui L, Hou X, Shen Z, Xu Y (2014) Defect features and mechanical properties of friction stir lap welded dissimilar AA2024–AA7075 aluminum alloy sheets. Mater Des 55:9–18. https://doi.org/10.1016/j.matdes.2013.09.062

    Article  Google Scholar 

  11. Mastanaiah P, Sharma A, Reddy GM (2016) Dissimilar friction stir welds in AA2219-AA5083 aluminium alloys: effect of process parameters on material inter-mixing, defect formation, and mechanical properties. Trans Indian Inst Metals 69(7):1397–1415. https://doi.org/10.1007/s12666-015-0694-6

    Article  Google Scholar 

  12. Hasan MM, Ishak M, Rejab MRM (2017) Influence of machine variables and tool profile on the tensile strength of dissimilar AA7075-AA6061 friction stir welds. Int J Adv Manuf Technol 90(9-12):2605–2615. https://doi.org/10.1007/s00170-016-9583-3

    Article  Google Scholar 

  13. Lakshminarayanan AK, Balasubramanian V, Elangovan K (2009) Effect of welding processes on tensile properties of AA6061 aluminium alloy joints. Int J Adv Manuf Technol 40(3-4):286–296. https://doi.org/10.1007/s00170-007-1325-0

    Article  Google Scholar 

  14. Kobayashi K, Nishimura Y, Iijima T, Ushio M, Tanaka M, Shimamura J, Ueno Y, Yamashita M (2004) Practical application of high efficiency twin-arc TIG welding method (SEDAR-TIG) for PCLNG storage tank. Welding in the World 48(7):35–39. https://doi.org/10.1007/BF03266441

    Article  Google Scholar 

  15. Zhang G, Xiong J, Gao H, Wu L (2012) Effect of process parameters on temperature distribution in twin-electrode TIG coupling arc. J Quant Spectrosc Radiat Transf 113(15):1938–1945. https://doi.org/10.1016/j.jqsrt.2012.05.018

    Article  Google Scholar 

  16. Yamada M (1998) Development of high efficiency TIG welding method. 1st Report of the Japan Welding Society 63:24–25

  17. Kobayashi K, Yuki M, Tejima A, Nishimura Y (2002) Development of high efficiency TIG welding method (SEDAR-TIG). Ishikawajima-Harima Giho 42(3):127–132 http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13700607

    Google Scholar 

  18. Wang S, Zhang H, Leng X, Wu, L. (2007) Twin-electrode TIG welding procedure and mechanism of weld formation. Transactions-China Welding Institution 28(2):21

    Google Scholar 

  19. Wang X, Fan D, Huang J, Huang Y (2014) A unified model of coupled arc plasma and weld pool for double electrodes TIG welding. J Phys D Appl Phys 47(27):275202. https://doi.org/10.1088/0022-3727/47/27/275202

    Article  Google Scholar 

  20. Ding X, Li H, Yang L, Gao Y, Wei H (2014) Numerical analysis of arc characteristics in two-electrode GTAW. Int J Adv Manuf Technol 70(9-12):1867–1874. https://doi.org/10.1007/s00170-013-5443-6

    Article  Google Scholar 

  21. Schwedersky MB, Gonçalves e Silva RH, Dutra JC, Reisgen U, Willms K (2016) Two-dimensional arc stagnation pressure measurements for the double-electrode GTAW process. Sci Technol Weld Join 21(4):275–280. https://doi.org/10.1080/13621718.2015.1104095

    Article  Google Scholar 

  22. Ogino Y, Hirata Y, Nomura K (2011) Numerical analysis of the heat source characteristics of a two-electrode TIG arc. J Phys D Appl Phys 44(21):215202. https://doi.org/10.1088/0022-3727/44/21/215202

    Article  Google Scholar 

  23. Puydt Q (2012) Comportement mécanique de soudures en alliage d’aluminium de la série 7xxx: de la microstructure à la modélisation de la rupture (Doctoral dissertation, Institut National Polytechnique de Grenoble-INPG).

  24. Bousquet E (2011) Durabilité des assemblages soudés par friction stir Welding (FSW) Corrélation entre microstructure et sensibilité à la corrosion (Doctoral dissertation, Ph. D. thesis, Université Bordeaux 1).

  25. Lin YC, Xia YC, Jiang YQ, Zhou HM, Li LT (2013) Precipitation hardening of 2024-T3 aluminum alloy during creep aging. Mater Sci Eng A 565:420–429. https://doi.org/10.1016/j.msea.2012.12.058

    Article  Google Scholar 

  26. Cochard A, Zhu K, Joulié S, Douin J, Huez J, Robbiola L, Sciau P, Brunet M (2017) Natural aging on Al-Cu-Mg structural hardening alloys–Investigation of two historical duralumins for aeronautics. Mater Sci Eng A 690:259–269. https://doi.org/10.1016/j.msea.2017.03.003

    Article  Google Scholar 

  27. Kaçar H, Atik E, Meriç C (2003) The effect of precipitation-hardening conditions on wear behaviours at 2024 aluminium wrought alloy. J Mater Process Technol 142(3):762–766. https://doi.org/10.1016/S0924-0136(03)00642-3

    Article  Google Scholar 

  28. Lefebvre F, Ganguly S, Sinclair I (2005) Micromechanical aspects of fatigue in a MIG welded aluminium airframe alloy: Part 1. Microstructural characterization. Mater Sci Eng A 397(1-2):338–345. https://doi.org/10.1016/j.msea.2005.02.051

    Article  Google Scholar 

  29. Rhodes CG, Mahoney MW, Bingel WH, Spurling RA, Bampton CC (1997) Effects of friction stir welding on microstructure of 7075 aluminum. Scr Mater 36(1):69–75

    Article  Google Scholar 

  30. Kaufman JG (2000) Introduction to aluminum alloys and tempers. ASM international.

  31. Kou S (2003) Welding metallurgy second edition. Hoboken, New Jersey, 1-29.

  32. Alfieria V, Caiazzoa F, Sergi V (2015) Autogenous laser welding of AA 2024 aluminium alloy: process issues and bead features. Procedia Cirp 33:406–411. https://doi.org/10.1016/j.procir.2015.06.094

    Article  Google Scholar 

  33. Rosalie JM, Bourgeois L (2012) Silver segregation to θ′(Al2Cu)–Al interfaces in Al–Cu–Ag alloys. Acta Mater 60(17):6033–6041. https://doi.org/10.1016/j.actamat.2012.07.039

    Article  Google Scholar 

  34. Norman AF, Drazhner V, Prangnell PB (1999) Effect of welding parameters on the solidification microstructure of autogenous TIG welds in an Al–Cu–Mg–Mn alloy. Mater Sci Eng A 259(1):53–64. https://doi.org/10.1016/S0921-5093(98)00873-9

    Article  Google Scholar 

  35. Elrefaey A (2015) Effectiveness of cold metal transfer process for welding 7075 aluminium alloys. Sci Technol Weld Join 20(4):280–285. https://doi.org/10.1179/1362171815Y.0000000017

    Article  Google Scholar 

  36. Kalita SJ (2011) Microstructure and corrosion properties of diode laser melted friction stir weld of aluminum alloy 2024 T351. Appl Surf Sci 257(9):3985–3997. https://doi.org/10.1016/j.apsusc.2010.11.163

    Article  Google Scholar 

  37. Jalilvand V, Omidvar H, Khorrami H (2014) Effect of welding parameters on the mechanical properties of AA2024 aluminium alloy joints welded by resistance seam welding. Can Metall Q 53(2):117–124. https://doi.org/10.1179/1879139513Y.0000000110

    Article  Google Scholar 

  38. Saravanan V, Rajakumar S, Banerjee N, Amuthakkannan R (2016) Effect of shoulder diameter to pin diameter ratio on microstructure and mechanical properties of dissimilar friction stir welded AA2024-T6 and AA7075-T6 aluminum alloy joints. Int J Adv Manuf Technol 87(9):3637–3645. https://doi.org/10.1007/s00170-016-8695-0

    Article  Google Scholar 

  39. Padmanaban R, Balusamy V, Vaira Vignesh R (2020) Effect of friction stir welding process parameters on the tensile strength of dissimilar aluminum alloy AA2024-T3 and AA7075-T6 joints. Mater Werkst 51(1):17–27. https://doi.org/10.1002/mawe.201800184

    Article  Google Scholar 

  40. Avinash P, Manikandan M, Arivazhagan N, Ramkumar KD, Narayanan S (2014) Friction stir welded butt joints of AA2024 T3 and AA7075 T6 aluminum alloys. Procedia Eng 75:98–102. https://doi.org/10.1016/j.proeng.2013.11.020

    Article  Google Scholar 

  41. Menan F (2008) Influence de la corrosion saline sur la tolérance aux dommages d’un alliage d’aluminium aéronautique 2XXX. Doctoral dissertation, Poitiers

    Google Scholar 

Download references

Acknowledgements

The authors wish to express their sincere appreciations to the Research Center in Industrial Technologies (CRTI) and Special thanks to the Laboratory of Science and Materials Engineering (LSGM).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the research, writing, and reviewing of the paper.

Corresponding author

Correspondence to Liamine Kaba.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

The authors give all the rights to publish the material presented in this work.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaba, L., Djeghlal, M.E., Ouallam, S. et al. Dissimilar welding of aluminum alloys 2024 T3 and 7075 T6 by TIG process with double tungsten electrodes. Int J Adv Manuf Technol 118, 937–948 (2022). https://doi.org/10.1007/s00170-021-07888-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07888-5

Keywords

Navigation