Skip to main content
Log in

Fused filament fabrication and mechanical performance of PVDF-based specialty thermoplastics

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Specialty thermoplastic materials based on fluoropolymer polyvinylidene fluoride (PVDF) became commercially available to the 3D printing community only recently. Additive manufacturing of PVDF-based structural components suited for harsher operational conditions is important for more demanding industrial sectors such as biomedical/chemical, aerospace, or automotive. Such components must ensure adequate mechanical performance in diverse deformation cases. Hence, this paper reports on fused filament fabrication (FFF) and quasi-static tensile, flexural and compressive testing of PVDF homopolymer, biocompatible PVDF-co-hexafluoropropylene (PVDF-HFP) copolymer, and static-dissipative PVDF-HFP/graphene composite specimens, which were printed with triangular lattice infill of variable density for addressing the influence of lightweighting. Printability in an open-chamber-based FFF machine is discussed in terms of part warpage and adhesion issues, which aggravate FFF process because of the higher degree of crystallinity, larger coefficient of thermal expansion, and hydrophobicity of PVDF. It was found that these printing complications are alleviated by applying lower printing speed and temperature together with the use of wider brims and a specialized FFF-tailored adhesive. The measured stress–strain curves are examined to analyze changes in strengths and moduli of elasticity of the specimens as a function of infill density including comparisons in ductility, failure mode, and anisotropic mechanical behavior such as tension–compression asymmetry. The presented results serve as a guideline for additive manufacturing of functional PVDF-based load-bearing components that are intended for service in different loading regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Niaki MK, Torabi SA, Nonino F (2019) Why manufacturers adopt additive manufacturing technologies: the role of sustainability. J Clean Prod 222:381–392. https://doi.org/10.1016/j.jclepro.2019.03.019

    Article  Google Scholar 

  2. Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D (2018) Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos Part B Eng 143:172–196. https://doi.org/10.1016/j.compositesb.2018.02.012

    Article  Google Scholar 

  3. Singh S, Singh G, Prakash C, Ramakrishna S (2020) Current status and future directions of fused filament fabrication. J Manuf Process 55:288–306. https://doi.org/10.1016/j.jmapro.2020.04.049

    Article  Google Scholar 

  4. Suárez L, Domínguez M (2020) Sustainability and environmental impact of fused deposition modelling (FDM) technologies. Int J Adv Manuf Technol 106:1267–1279. https://doi.org/10.1007/s00170-019-04676-0

    Article  Google Scholar 

  5. Gordelier TJ, Thies PR, Turner L, Johanning L (2019) Optimising the FDM additive manufacturing process to achieve maximum tensile strength: a state-of-the-art review. Rapid Prototyp J 25:953–971. https://doi.org/10.1108/RPJ-07-2018-0183

    Article  Google Scholar 

  6. Dizon JRC, Espera AH, Chen Q, Advincula RC (2018) Mechanical characterization of 3D-printed polymers. Addit Manuf 20:44–67. https://doi.org/10.1016/j.addma.2017.12.002

    Article  Google Scholar 

  7. Wu H, Fahy WP, Kim S, Kim H, Zhao N, Pilato L, Kafi A, Bateman S, Koo JH (2020) Recent developments in polymers/polymer nanocomposites for additive manufacturing. Prog Mater Sci 111:100638. https://doi.org/10.1016/j.pmatsci.2020.100638

    Article  Google Scholar 

  8. Ameduri B,  Sawada H (2016) Fluorinated polymers, Royal Society of Chemistry, Cambridge, https://doi.org/10.1039/9781782629368

  9. Cardoso VF, Correia DM, Ribeiro C, Fernandes MM, Lanceros-Méndez S (2018) Fluorinated polymers as smart materials for advanced biomedical applications. Polymers (Basel) 10:1–26. https://doi.org/10.3390/polym10020161

    Article  Google Scholar 

  10. Améduri B (2020) The promising future of fluoropolymers. Macromol Chem Phys 221:1–14. https://doi.org/10.1002/macp.201900573

    Article  Google Scholar 

  11. Ameduri B (2009) From vinylidene fluoride (VDF) to the applications of VDF-containing polymers and copolymers: recent developments and future trends. Chem Rev 109:6632–6686. https://doi.org/10.1021/cr800187m

    Article  Google Scholar 

  12. Drobny J (2015) Properties of polyvinylidene fluoride. In: Spec. Thermoplast. Springer Berlin Heidelberg, Berlin, pp 26–31. https://doi.org/10.1007/978-3-662-46419-9_7

    Chapter  Google Scholar 

  13. Mishra S, Unnikrishnan L, Nayak SK, Mohanty S (2019) Advances in piezoelectric polymer composites for energy harvesting applications: a systematic review. Macromol Mater Eng 304:1–25. https://doi.org/10.1002/mame.201800463

    Article  Google Scholar 

  14. Teng H (2012) Overview of the development of the fluoropolymer industry. Appl Sci 2:496–512. https://doi.org/10.3390/app2020496

    Article  Google Scholar 

  15. Momenzadeh N, Miyanaji H, Berfield TA (2019) Influences of zirconium tungstate additives on characteristics of polyvinylidene fluoride (PVDF) components fabricated via material extrusion additive manufacturing process. Int J Adv Manuf Technol 103:4713–4720. https://doi.org/10.1007/s00170-019-03978-7

    Article  Google Scholar 

  16. Porter DA, Hoang TVT, Berfield TA (2017) Effects of in-situ poling and process parameters on fused filament fabrication printed PVDF sheet mechanical and electrical properties. Addit Manuf 13:81–92. https://doi.org/10.1016/j.addma.2016.11.005

    Article  Google Scholar 

  17. Petersmann S, Spoerk M, Van De Steene W, Üçal M, Wiener J, Pinter G, Arbeiter F (2020) Mechanical properties of polymeric implant materials produced by extrusion-based additive manufacturing. J Mech Behav Biomed Mater 104:103611. https://doi.org/10.1016/j.jmbbm.2019.103611

    Article  Google Scholar 

  18. Momenzadeh N, Miyanaji H, Porter DA, Berfield TA (2020) Polyvinylidene fluoride (PVDF) as a feedstock for material extrusion additive manufacturing. Rapid Prototyp J 26:156–163. https://doi.org/10.1108/RPJ-08-2018-0203

    Article  Google Scholar 

  19. Dong G, Kang Y, Cao M (2014) Application and modification of poly(vinylidene fluoride) (PVDF) membranes - a review. J Membr Sci 463:145–165. https://doi.org/10.1016/j.memsci.2014.03.055

    Article  Google Scholar 

  20. Ning C, Zhou Z, Tan G, Zhu Y, Mao C (2018) Electroactive polymers for tissue regeneration: developments and perspectives. Prog Polym Sci 81:144–162. https://doi.org/10.1016/j.progpolymsci.2018.01.001

    Article  Google Scholar 

  21. Ribeiro C, Costa CM, Correia DM, Nunes-Pereira J, Oliveira J, Martins P, Gonçalves R, Cardoso VF, Lanceros-Méndez S (2018) Electroactive poly(vinylidene fluoride)-based structures for advanced applications. Nat Protoc 13:681–704. https://doi.org/10.1038/nprot.2017.157

    Article  Google Scholar 

  22. Chen C, Wang X, Wang Y, Yang D, Yao F, Zhang W, Wang B, Sewvandi GA, Yang D, Hu D (2020) Additive manufacturing of piezoelectric materials. Adv Funct Mater 30:2005141. https://doi.org/10.1002/adfm.202005141

    Article  Google Scholar 

  23. Goh GD, Yap YL, Tan HKJ, Sing SL, Goh GL, Yeong WY (2020) Process–structure–properties in polymer additive manufacturing via material extrusion: a review. Crit Rev Solid State Mater Sci 45:113–133. https://doi.org/10.1080/10408436.2018.1549977

    Article  Google Scholar 

  24. Dudescu C, Racz L (2018) Effects of raster orientation, infill rate and infill pattern on the mechanical properties of 3D printed materials. ACTA Univ Cibiniensis 69:23–30. https://doi.org/10.1515/aucts-2017-0004

    Article  Google Scholar 

  25. Gonabadi H, Yadav A, Bull SJ (2020) The effect of processing parameters on the mechanical characteristics of PLA produced by a 3D FFF printer. Int J Adv Manuf Technol 111:695–709. https://doi.org/10.1007/s00170-020-06138-4

    Article  Google Scholar 

  26. Terekhina S, Skornyakov I, Tarasova T, Egorov S (2019) Effects of the infill density on the mechanical properties of nylon specimens made by filament fused fabrication. Technologies. 7:57. https://doi.org/10.3390/technologies7030057

    Article  Google Scholar 

  27. Nadernezhad A, Unal S, Khani N, Koc B (2019) Material extrusion-based additive manufacturing of structurally controlled poly(lactic acid)/carbon nanotube nanocomposites. Int J Adv Manuf Technol 102:2119–2132. https://doi.org/10.1007/s00170-018-03283-9

    Article  Google Scholar 

  28. Carneiro OS, Silva AF, Gomes R (2015) Fused deposition modeling with polypropylene. Mater Des 83:768–776. https://doi.org/10.1016/j.matdes.2015.06.053

    Article  Google Scholar 

  29. Torres J, Cotelo J, Karl J, Gordon AP (2015) Mechanical property optimization of FDM PLA in shear with multiple objectives. Jom. 67:1183–1193. https://doi.org/10.1007/s11837-015-1367-y

    Article  Google Scholar 

  30. Zhou X, Hsieh SJ, Ting CC (2018) Modelling and estimation of tensile behaviour of polylactic acid parts manufactured by fused deposition modelling using finite element analysis and knowledge-based library. Virtual Phys Prototyp 13:177–190. https://doi.org/10.1080/17452759.2018.1442681

    Article  Google Scholar 

  31. Cerda-Avila SN, Medellín-Castillo HI, Lim T (2020) An experimental methodology to analyse the structural behaviour of FDM parts with variable process parameters. Rapid Prototyp J 26:1615–1625. https://doi.org/10.1108/RPJ-12-2019-0312

    Article  Google Scholar 

  32. Mahmood S, Qureshi AJ, Goh KL, Talamona D (2017) Tensile strength of partially filled FFF printed parts: experimental results. Rapid Prototyp J 23:122–128. https://doi.org/10.1108/RPJ-08-2015-0115

    Article  Google Scholar 

  33. Rinaldi M, Ghidini T, Cecchini F, Brandao A, Nanni F (2018) Additive layer manufacturing of poly (ether ether ketone) via FDM. Compos Part B Eng 145:162–172. https://doi.org/10.1016/j.compositesb.2018.03.029

    Article  Google Scholar 

  34. Vaezi M, Yang S (2015) Extrusion-based additive manufacturing of PEEK for biomedical applications. Virtual Phys Prototyp 10:123–135. https://doi.org/10.1080/17452759.2015.1097053

    Article  Google Scholar 

  35. Baich L, Manogharan G, Marie H (2015) Study of infill print design on production cost-time of 3D printed ABS parts. Int J Rapid Manuf 5:308. https://doi.org/10.1504/ijrapidm.2015.074809

    Article  Google Scholar 

  36. Alvarez KLC, Lagos RFC, Aizpun M (2016) Investigating the influence of infill percentage on the mechanical properties of fused deposition modelled ABS parts. Ing e Investig 36:110–116. https://doi.org/10.15446/ing.investig.v36n3.56610

    Article  Google Scholar 

  37. Kynar & Kynar Flex (n.d.). polyvinylidene fluoride performance characteristics & data, Arkema Inc., 2014, 20 p.

  38. Spoerk M, Holzer C, Gonzalez-Gutierrez J (2020) Material extrusion-based additive manufacturing of polypropylene: a review on how to improve dimensional inaccuracy and warpage. J Appl Polym Sci 137:1–16. https://doi.org/10.1002/app.48545

    Article  Google Scholar 

  39. Bashford D, (1997) Thermoplastics directory and databook

  40. Dey A, Yodo N (2019) A systematic survey of FDM process parameter optimization and their influence on part characteristics. J Manuf Mater Process 3:64. https://doi.org/10.3390/jmmp3030064

    Article  Google Scholar 

  41. Ariza Gomez AJ, Contreras MM, Vaz MA, Costa CA, Costa MF (2020) Temperature-time large strain mechanical model for poly(vinylidene fluoride). Polym Test 82:106312. https://doi.org/10.1016/j.polymertesting.2019.106312

    Article  Google Scholar 

  42. Challier M, Besson J, Laiarinandrasana L, Piques R (2006) Damage and fracture of polyvinylidene fluoride (PVDF) at 20 °C: experiments and modelling. Eng Fract Mech 73:79–90. https://doi.org/10.1016/j.engfracmech.2005.06.007

    Article  Google Scholar 

  43. Laiarinandrasana L, Besson J, Lafarge M, Hochstetter G (2009) Temperature dependent mechanical behaviour of PVDF: experiments and numerical modelling. Int J Plast 25:1301–1324. https://doi.org/10.1016/j.ijplas.2008.09.008

    Article  MATH  Google Scholar 

  44. Reis JML, Motta EP, Da Costa Mattos HS (2015) Elasto-viscoplastic behaviour of a polyvinylidene fluoride (PVDF) in tension. Polym Test 46:9–13. https://doi.org/10.1016/j.polymertesting.2015.06.013

    Article  Google Scholar 

  45. Fleck NA, Deshpande VS, Ashby MF (2010) Micro-architectured materials: past, present and future. Proc R Soc A Math Phys Eng Sci 466:2495–2516. https://doi.org/10.1098/rspa.2010.0215

    Article  Google Scholar 

  46. Jiang Y, Raney JR (2019) 3D printing of amylopectin-based natural fiber composites. Adv Mater Technol 4:1900521. https://doi.org/10.1002/admt.201900521

    Article  Google Scholar 

  47. Bakır AA, Atik R, Özerinç S (2021) Effect of fused deposition modeling process parameters on the mechanical properties of recycled polyethylene terephthalate parts. J Appl Polym Sci 138:49709. https://doi.org/10.1002/app.49709

    Article  Google Scholar 

  48. Costa P, Nunes-Pereira J, Oliveira J, Silva J, Moreira JA, Carabineiro SAC, Buijnsters JG, Lanceros-Mendez S (2017) High-performance graphene-based carbon nanofiller/polymer composites for piezoresistive sensor applications. Compos Sci Technol 153:241–252. https://doi.org/10.1016/j.compscitech.2017.11.001

    Article  Google Scholar 

  49. Pazat A, Barrès C, Bruno F, Janin C, Beyou E (2018) Preparation and properties of elastomer composites containing “graphene”-based fillers: a review. Polym Rev 58:403–443. https://doi.org/10.1080/15583724.2017.1403446

    Article  Google Scholar 

  50. Fontananova E, Bahattab MA, Aljlil SA, Alowairdy M, Rinaldi G, Vuono D, Nagy JB, Drioli E, Di Profio G (2015) From hydrophobic to hydrophilic polyvinylidenefluoride (PVDF) membranes by gaining new insight into material’s properties. RSC Adv 5:56219–56231. https://doi.org/10.1039/c5ra08388e

    Article  Google Scholar 

  51. Sieradzka M, Fryczkowski R, Biniaś D, Biniaś W, Janicki J (2020) A facile approach to obtaining PVDF/graphene fibers and the effect of nanoadditive on the structure and properties of nanocomposites. Polym Test 81:106229. https://doi.org/10.1016/j.polymertesting.2019.106229

    Article  Google Scholar 

  52. Aw YY, Yeoh CK, Idris MA, Teh PL, Hamzah KA, Sazali SA (2018) Effect of printing parameters on tensile, dynamic mechanical, and thermoelectric properties of FDM 3D printed CABS/ZnO composites. Materials (Basel) 11:466. https://doi.org/10.3390/ma11040466

    Article  Google Scholar 

  53. Donato GHB, Bianchi M (2012) Pressure dependent yield criteria applied for improving design practices and integrity assessments against yielding of engineering polymers. J Mater Res Technol 1:2–7. https://doi.org/10.1016/S2238-7854(12)70002-9

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by a grant No. S-MIP-17-89 from the Research Council of Lithuania (project acronym: FLEXYMECH-3DP).

Availability of data and material

The data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

Code Availability

There are no software codes to share.

Funding

The research leading to these results received funding from the Research Council of Lithuania under Grant Agreement No. S-MIP-17-89.

Author information

Authors and Affiliations

Authors

Contributions

Farusil Najeeb Mullaveettil: investigation, formal analysis, data curation, visualization, and writing — original draft

Rolanas Dauksevicius: conceptualization, supervision, funding acquisition, formal analysis, visualization, and writing — review and editing

Marius Rimasauskas: methodology, resources, investigation, formal analysis, and writing — review and editing

Valdas Grigaliunas: investigation, resources, writing — review and editing

Corresponding author

Correspondence to Rolanas Dauksevicius.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mullaveettil, F.N., Dauksevicius, R., Rimasauskas, M. et al. Fused filament fabrication and mechanical performance of PVDF-based specialty thermoplastics. Int J Adv Manuf Technol 117, 3267–3280 (2021). https://doi.org/10.1007/s00170-021-07887-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07887-6

Keywords

Navigation