Skip to main content

Advertisement

Log in

Integrated optimization of cutting parameters and hob parameters for energy-conscious gear hobbing

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Optimum process parameters play an important role in improving manufacturing process which have a vital influence on the energy consumption and production cost. Considering the fact that hobbing process is sensitive to process parameters, an integrated multi-objective process parameters optimization method for gear hobbing is proposed to reduce energy consumption and production cost. Thus, this paper firstly analyzes the hobbing process parameters and establishes a description of hobbing process parameters problem. Then a multi-objective optimization model of hobbing process parameters is introduced, with energy consumption and production cost to be optimized. An improved multi-objective ant lion optimizer (IMOALO) is designed to solve multi-objective optimization problem. Finally, a case study is presented in detail to verify the optimization model. The results show that energy consumption and production cost can be optimized simultaneously by determining appropriate process parameters based on proposed method. It has potential in providing favorable support and assistance for technical operators in the practical parametric decision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

The code for current study is available from the corresponding author on reasonable request.

Abbreviations

a p :

Cutting depth (mm)

A :

Surpass stroke of hob (mm)

B :

Gear width (mm)

cpi :

Cutting parameters

C f, K 1, K 2, K 3, x f, y f, z f, u f, v f :

Hobbing force coefficients

C energy :

Energy consumption cost (yuan)

C gear :

Gear blank cost (yuan)

C labor :

Labor cost (yuan)

C machine :

Machine tool wear cost (yuan)

C tool :

Tool cost (yuan)

C total :

Production cost (yuan)

C T, ω :

Tool life coefficients

d a0 :

Diameter of hob tip (mm)

d 0 :

Diameter of hob (mm)

E :

Approach stroke of hob (mm)

E a :

Energy consumption in air-cutting state (J)

E c :

Energy consumption of cutting state (J)

E s :

Energy consumption in standby state (J)

E total :

Hobbing energy consumption (J)

f a :

Axial feed (mm/r)

F a :

Axial feed speed (mm/min)

F amax :

Maximum axial feed speed (mm/min)

F amin :

Minimum axial feed speed (mm/min)

F c :

Hobbing force (N)

F cmax :

Maximum hobbing force (N)

F r :

Radial feed speed (mm/min)

hpi :

Hob parameters

j :

Total passes of hob

L a :

Axial air-cutting length (mm)

L r :

Radial air-cutting length (mm)

m n :

Normal module of gear (mm)

n 0 :

Spindle speed (r/min)

n max :

Maximum spindle speed (r/min)

n min :

Minimum spindle speed (r/min)

P a :

Power consumption in air-cutting state (W)

P ap :

Additional power consumption (W)

P c :

Power consumption of cutting state (W)

P e :

Rated motor power (W)

P n :

Power consumption under non-loaded machine running (W)

P r :

Power consumption in removing process (W)

P s :

Power consumption in standby state (W)

P sc :

Power consumption of the activated auxiliary systems (W)

r :

Radius of hob tip (mm)

R a :

Finished surface roughness (μm)

s :

Number of slots

s e :

Unit cost of electricity energy (yuan/kWh)

s l :

Unit cost of labor (yuan/min)

s m :

Unit cost of machine wear (yuan/min)

s t :

Unit cost of tool (yuan/min)

t a :

Air-cutting time (s)

t c :

Cutting time (s)

t s :

Standby time (s)

t total :

Total processing time (s)

\( {T}_{\mathrm{hob}}^i \) :

Service life of tool (min)

\( {T}_{\mathrm{hob}}^{\mathrm{min}} \) :

Minimum tool life (min)

T m :

Service life of machine tool (year)

U :

Safety allowance (mm)

v :

Cutting velocity (m/min)

wpi :

Gear workpiece parameters

X i :

Parameters set

z 0 :

Number of hob heads

z 2 :

Number of gear teeth

α n :

Profile angle (°)

β 0 :

Helix angle (°)

ε i :

Additional power coefficients

κ i :

Non-loaded machining power coefficients

η :

Motor power factor

ABC:

Artificial bee colony

AMGA:

Archive-based micro-genetic algorithm

COA:

Cuckoo optimization algorithm

GA:

Genetic algorithm

HH:

Hoopoe heuristic

IMOALO:

Improved multi-objective ant lion optimizer

MOGWO:

Multi-objective grey wolf optimizer

MOPSO:

Multi-objective particle swarm optimization

MOSA:

Multi-objective simulated annealing

MRR:

Material remove rate

NSGA-II:

Non-dominated sorting genetic algorithm-II

NSTLBO:

Non-dominated sorting teaching-learning-based optimization

SEC:

Specific energy consumption

References

  1. Tuo J, Liu F, Liu P, Zhang H, Cai W (2018) Energy efficiency evaluation for machining systems through virtual part. Energy 159:172–183

    Article  Google Scholar 

  2. Cai W, Liu C, Lai K, Li L, Cunha J, Hu L (2019) Energy performance certification in mechanical manufacturing industry: a review and analysis. Energ Convers Manage 186:415–432

    Article  Google Scholar 

  3. Hu L, Liu Y, Chen P, Tang W, Tang R, Tiwari A (2018) Minimising the energy consumption of tool change and tool path of machining by sequencing the features. Energy 147:390–402

    Article  Google Scholar 

  4. Xiao Q, Li C, Tang Y, Pan J, Yu J, Chen X (2019) Multi-component energy modeling and optimization for sustainable dry gear hobbing. Energy 187:115911

    Article  Google Scholar 

  5. ISO 14955-1: 2017(E), 2017, Machine Tools E Environmental evaluation of machine tools -Part 1: design methodology for energy-efficient machine tools. Geneva: International Organization for Standardization (ISO)

  6. Newman ST, Nassehi A, Imani-Asrai R, Dhokia V (2012) Energy efficient process planning for CNC machining. CIRP J Manuf Sci Tec 5(2):127–136

    Article  Google Scholar 

  7. Nguyen T (2019) Prediction and optimization of machining energy, surface roughness, and production rate in SKD61 milling. Measurement 136:525–544

    Article  Google Scholar 

  8. Li L, Deng X, Zhao J, Zhao F, Sutherland JW (2018) Multi-objective optimization of tool path considering efficiency energy-saving and carbon-emission for free-form surface milling. J Clean Prod 172:3311–3322

    Article  Google Scholar 

  9. Wang W, Tian G, Chen M, Tao F, Zhang C, AI Ahmari A, Li Z, Jiang Z (2020) Dual-objective program and improved artificial bee colony for the optimization of energy-conscious milling parameters subject to multiple constraints. J Clean Prod 245:118714

    Article  Google Scholar 

  10. Zhang Y, Ge L (2015) Method for process planning optimization with energy efficiency consideration. Int J Adv Manuf Technol 77(9-12):2197–2207

    Article  Google Scholar 

  11. Miranda JC, Camposeco Negrete C, Calderón Najera J d D (2016) Optimization of cutting parameters to minimize energy consumption during turning of AISI 1018 steel at constant material removal rate using robust design. Int J Adv Manuf Technol 83:1341–1347

    Article  Google Scholar 

  12. Hu L, Tang R, Cai W, Feng Y, Ma X (2019) Optimisation of cutting parameters for improving energy efficiency in machining process. Robot Cim-Int Manuf 59:406–416

    Article  Google Scholar 

  13. Rao RV, Rai DP, Balic J (2018) Multi-objective optimization of machining and micro-machining processes using non-dominated sorting teaching–learning-based optimization algorithm. J Intell Manuf 29:1715–1737

    Article  Google Scholar 

  14. Mellal MA, Williams EJ (2016) Parameter optimization of advanced machining processes using cuckoo optimization algorithm and hoopoe heuristic. J Intell Manuf 27:927–942

    Article  Google Scholar 

  15. Cao WD, Yan CP, Wu DJ, Tuo JB (2017) A novel multi-objective optimization approach of machining parameters with small sample problem in gear hobbing. Int J Adv Manuf Technol 93:1–12

    Article  Google Scholar 

  16. Ni H, Yan C, Cao W, Liu Y (2020) A novel parameter decision approach in hobbing process for minimizing carbon footprint and processing time. Int J Adv Manuf Technol 111:3405–3419

    Article  Google Scholar 

  17. Ni HX, Yan CP, Ni SF, Shu H, Zhang Y (2021) Multi-verse optimizer based parameters decision with considering tool life in dry hobbing process. Adv Manuf 9:216–234

    Article  Google Scholar 

  18. Zhang H, Deng Z, Fu Y, Lv L, Yan C (2017) A process parameters optimization method of multi-pass dry milling for high efficiency, low energy and low carbon emissions. J Clean Prod 148:174–184

    Article  Google Scholar 

  19. Zhou G, Lu Q, Xiao Z, Zhou C, Tian C (2019) Cutting parameter optimization for machining operations considering carbon emissions. J Clean Prod 208:937–950

    Article  Google Scholar 

  20. Öztürk S, Kahraman MF (2019) Modeling and optimization of machining parameters during grinding of flat glass using response surface methodology and probabilistic uncertainty analysis based on Monte Carlo simulation. Measurement 145:274–291

    Article  Google Scholar 

  21. Priyadarshini M, Tripathy PP, Mishra D, Panda S (2017) Multi characteristics optimization of laser drilling process parameter using Fuzzy-TOPSIS method. Mater Today: Proc 4:8538–8547

    Google Scholar 

  22. Yang X, Cao H, Li B, Jafar S, Zhu L (2018) A thermal energy balance optimization model of cutting space enabling environmentally benign dry hobbing. J Clean Prod 172:2323–2335

    Article  Google Scholar 

  23. Li B, Cao H, Yang X, Jafar S, Zeng D (2018) Thermal energy balance control model of motorized spindle system enabling high-speed dry hobbing process. J Manuf Process 35(OCT.):29–39

    Article  Google Scholar 

  24. Claudin C, Rech J (2009) Development of a new rapid characterization method of hob’s wear resistance in gear manufacturing—application to the evaluation of various cutting edge preparations in high speed dry gear hobbing. J Mater Process Technol 209(11):5152–5160

    Article  Google Scholar 

  25. Sari D, Troß N, Löpenhaus C, Bergs T (2019) Development of an application-oriented tool life equation for dry gear finish hobbing. Wear 426-427(Part B):1563–1572

    Article  Google Scholar 

  26. Klocke F, Löpenhaus C, Sari D (2016) Process concepts for gear finish hobbing. Procedia CIRP 41:875–880

    Article  Google Scholar 

  27. Wang J, Du P, Lu H, Yang W, Niu T (2018) An improved grey model optimized by multi-objective ant lion optimization algorithm for annual electricity consumption forecasting. Appl Soft Comput 72:321–337

    Article  Google Scholar 

  28. Zhang Y, Cao HJ, Chen P, Zhu LB, Yang X (2017) An adaptive parameter optimization model and system for sustainable gear dry hobbing in batch production. J Mech Sci Technol 31:2951–2960

    Article  Google Scholar 

  29. Cai W, Liu F, Zhou X, Xie J (2016) Fine energy consumption allowance of workpieces in the mechanical manufacturing industry. Energy 114:623–633

    Article  Google Scholar 

  30. Velchev S, Kolev I, Ivanov K, Gechevski S (2014) Empirical models for specific energy consumption and optimization of cutting parameters for minimizing energy consumption during turning. J Clean Prod 80:139–149

    Article  Google Scholar 

  31. Diaz CJL, Ocampo-Martinez C (2019) Energy efficiency in discrete-manufacturing systems: insights, trends, and control strategies. J Manuf Syst 52(Part A):131–145

    Article  Google Scholar 

  32. Trianni A, Cagno E, Farné S (2016) Barriers, drivers and decision-making process for industrial energy efficiency: a broad study among manufacturing small and medium-sized enterprises. Appl Energy 162:1537–1551

    Article  Google Scholar 

  33. May G, Stahl B, Taisch M, Kiritsis D (2017) Energy management in manufacturing: from literature review to a conceptual framework. J Clean Prod 167:1464–1489

    Article  Google Scholar 

  34. Chen X, Li C, Tang Y, Li L, Xiao Q (2018) A framework for energy monitoring of machining workshops based on IoT. Procedia CIRP 72:1386–1391

    Article  Google Scholar 

  35. Li C, Li L, Tang Y, Zhu Y, Li L (2019) A comprehensive approach to parameters optimization of energy-aware CNC milling. J Intell Manuf 30(1):123–138

    Article  Google Scholar 

  36. Sabkhi N, Moufki A, Nouari M, Pelaingre C, Barlier C (2016) Prediction of the hobbing cutting forces from a thermomechanical modeling of orthogonal cutting operation. J Manuf Process 23:1–12

    Article  Google Scholar 

  37. Hu SH, Liu F, He Y et al (2010) Characteristics of additional load losses of spindle system of machine tools. J Adv Mech Des, Syst Manuf 4(7):1221–1233

    Article  Google Scholar 

  38. Tang J, Wei J, Shi Z (2019) An evaluation method of gear profile deviations based on the consideration of installation errors. Measurement 146:806–814

    Article  Google Scholar 

  39. Li C, Xiao Q, Tang Y, Li L (2016) A method integrating Taguchi, RSM and MOPSO to CNC machining parameters optimization for energy saving. J Clean Prod 135:263275

    Article  Google Scholar 

  40. Yang Y, Cao L, Wang C, Zhou Q, Jiang P (2018) Multi-objective process parameters optimization of hot-wire laser welding using ensemble of metamodels and NSGA-II. Robot Cim-Int Manuf 53:141–152

    Article  Google Scholar 

  41. Hernán Chávez-García, Krystel K Castillo-Villar (2018) Simulation-based model for the optimization of machining parameters in a metal-cutting operation. Simul Model Pract Th 84:204-221

  42. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98

    Article  Google Scholar 

  43. Mirjalili S, Jangir P, Saremi S (2017) Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems. Appl Intell 46:79–95

    Article  Google Scholar 

Download references

Funding

This work was supported by the Key Projects of Strategic Scientific and Technological Innovation Cooperation of National Key R&D Program of China (No. 2020YFE0201000).

Author information

Authors and Affiliations

Authors

Contributions

Hengxin Ni: Conceptualization, Methodology, Data curation, Writing—original draft, Investigation, Writing - review and editing, Software, Visualization. Chunping Yan: Conceptualization, Writing—review and editing, Investigation, Supervision, Project administration. Weiwei Ge: Writing—review and editing, Data curation, Visualization. Shenfu Ni: Writing—review and editing, Methodology, Formal analysis. Han Sun: Writing—review and editing, Validation, Formal analysis. Teng Xu: Writing—review and editing, Validation, Formal analysis

Corresponding author

Correspondence to Chunping Yan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, H., Yan, C., Ge, W. et al. Integrated optimization of cutting parameters and hob parameters for energy-conscious gear hobbing. Int J Adv Manuf Technol 118, 1609–1626 (2022). https://doi.org/10.1007/s00170-021-07804-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07804-x

Keywords

Navigation