Skip to main content
Log in

Sinterability properties of a ceramic synthesized from Algerian kaolin and spent magnesia-carbon refractory bricks

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This research aims to study the influence of the sintering temperature on the microstructural and physical properties for application as refractory bricks. Kaolin DD3 (from Djebel Debbagh, Guelma-Algeria) and spent magnesia-carbon refractory bricks mixtures (MgO-C) with relative weight ratios of 95/5 were synthesized by solid oxide reaction route at sintering temperatures of 1000, 1100, 1200, 1300, and 1400°C. The phases and their transformations during heating were investigated using X-ray diffraction analysis (XRD), scanning electronic microscopy (SEM), and helium pycnometer (AccuPyc II 1340). XRD results indicated the changes in the sintered pellets. The phase changes were mullite and α-low cristobalite at the sintering temperature of 1000°C. Cordierite begins to appear at 1100°C, and it increases as the sintering temperature rise, whereas the mullite and cristobalite phases decrease. At 1400°C, a magnesium aluminate spinel is formed with the presence of mullite, α-low cristobalite, and cordierite. SEM analysis was carried out to observe the surface morphology and the density decreased with rising sintering temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Kolli M, Hamidouche M, Fantouzi G, Chevalier J (2007) Elaboration and characterization of a refractory based on Algerian kaolin. Ceram Int 33:1435–1443. https://doi.org/10.1016/j.ceramint.2006.06.009

    Article  Google Scholar 

  2. Adeousun SO, Akpan EI, Gbenebor OP, Taiwo OO, Eke IJ (2016) Refractory behaviors of magnetite-kaolin bricks. The Minerals, Metals & Materials Society 28(11):2824–2831. https://doi.org/10.1007/s.11837-016-2114-8

    Article  Google Scholar 

  3. Ibrahim SI, Ali NM, Abood TW (2018) Improving the thermal and physical properties of fire clay refractory bricks by added magnesia. AIP Conference Proceedings 1968(030025). https://doi.org/10.1063/1.5039212

  4. Chargui F, Hamidouche M, Belhouchet H, Jorand Y, Doufnoune R, Fantozzi G (2018) Mullite fabrication from natural kaolin and aluminium slag. Cerámica v Vidrio 57:169–177. https://doi.org/10.1016/j.bsecv.2018.01.001

    Article  Google Scholar 

  5. Schneider H, Fischer RX, Schreuer J (2015) Mullite: crystal structure and related properties. J Am Ceram Soc 98(10):2948–2967. https://doi.org/10.1111/jace.13817

    Article  Google Scholar 

  6. Hamidouche M, Bouaouadja N, Olagnon C, Fantozzi G (2003) Thermal shock behaviour of mullite ceramic. Ceram Int 29(6):599–609. https://doi.org/10.1016/S0272-8842(02)00207-9

    Article  Google Scholar 

  7. Ibrahim DM, Naga SM, Abdel Kader Z, Abdel Salam E (1995) Cordierite-mullite refractories. Ceram Int 21(4):265–269

    Article  Google Scholar 

  8. Rhanim H, Olagnon C, Fantozzi G, Torrecillas R (1997) Experimental characterization of high temperature creep resistance of mullite. Ceram Int 23(6:497–507. https://doi.org/10.1063/1.5039212

    Article  Google Scholar 

  9. Lamara S, Redaoui D, Sahnoune F, Heraiz M, Saheb N (2020) Formation of anorthite containing cordierite materials through reaction sintering kaolin, MgO and CaO precursors. Sci Sinter 52(2). https://doi.org/10.2298/SOS2002135L

  10. Zhu K, Yuan YD, Juan W, Rui Z (2010) Synthesis of cordierite with low thermal expansion coefficient. Advanced Materials Research 105:802–804. https://doi.org/10.4028/www.scientific.net/AMR.105-106.802

    Article  Google Scholar 

  11. Ouali A, Sahnoune F, Heraiz M, Belhouchet H (2016) Sinterability and thermal properties of cordierite ceramics prepared from Algerian kaolinite and magnesium hydroxide. Mol Cryst Liq Cryst 628:65–72. https://doi.org/10.1080/15421406.2015.1137120

    Article  Google Scholar 

  12. Sembiring S, Simanjuntak W, Situmeang R, Riyanto A, Sebayang K (2016) Preparation of refractory cordierite using amorphous rice husk silica for thermal insulation purposes. Ceram Int 42(7):8431–8437. https://doi.org/10.1016/j.ceramint.2016.02.062

    Article  Google Scholar 

  13. Jian-er Z, Dong Y, Hampshire S, Meng G (2011) Utilization of sepiolite in the synthesis of porous cordierite ceramics. Appl Clay Sci 52(3):328–332. https://doi.org/10.1016/j.clay.2011.02.001

    Article  Google Scholar 

  14. Green KE, Hastert JL, Roy DW (1989) Polycrystalline MgA12O4 spinel a broad band optical material for offensive environments. In Window and Dome Technologies and Materials, 1112, 2–8. International Society for Optics and Photonics. https://doi.org/10.1117/12.960757

  15. Ibram G, Jagantha Reddy G, Sundararajan G, Olhero SM, Torres PMC, Ferreira JMF (2010) Influence of processing route on microstructure and mechanical properties of MgAl2O4 spinel. Ceram Int 36:73–482. https://doi.org/10.1016/j.ceramint.2009.09.002

    Article  Google Scholar 

  16. Ganesh I (2013) A review on magnesium aluminate (MgAl2O4) spinel: synthesis, processing and applications. Int Mater Rev 58(2):63–112. https://doi.org/10.1179/1743280412Y.0000000001

    Article  MathSciNet  Google Scholar 

  17. Ghosh A, Sarkar R, Mukherjee B, Das SK (2004) Effect of spinel content on the properties of magnesia-spinel composite refractory. J Eur Ceram Soc 24:2079–2085. https://doi.org/10.1016/S0955-2219(03)00353-4

    Article  Google Scholar 

  18. Lutteroti L (2000) MAUD, Version 2.50. http://maud.radiographema

  19. Rietveld HM (1969) A profile refinement for nuclear and magnetic structures. J Appl Crystallogr 2(2):65–71. https://doi.org/10.1107/S0021889869006558

    Article  Google Scholar 

  20. Mebrek A, Rezzag H, Benayache S, Azzi A, Taïbi Y, Ladjama S, Touati N, Grid A, Bouchoucha S (2019) Effect of chamotte on the structural and microstructural characteristics of mullite elaborated via reaction sintering of Algerian kaolin. J Mater Res Technol 8(5):4010–4018. https://doi.org/10.1016/j.jmrt.2019.07.009

    Article  Google Scholar 

  21. Lee WE, Rainforth WM (1994) Structural oxides I: Al2O3 and mullite. Ceramic microstructure property control by processing, Chapman & Hall, London, UK

  22. Redaoui D, Sahnoune F, Ouali A, Saheb N (2018) Synthesis and thermal behavior of cordierite ceramics from Algerian kaolin and magnesium oxide. Acta Phys Pol A 134(1). https://doi.org/10.12693/APhysPolA.134.71

  23. Njoya D, Elimbi A, Fouejio D, Fouejio D, Hajjaji M (2016) Effects of two mixtures of kaolin-talc-bauxite and firing temperatures on the characteristics of cordierite-based ceramics. J Build Eng 8:99–106. https://doi.org/10.1016/j.jobe.2016.10.004

    Article  Google Scholar 

  24. Gómez I, Hernández M, Aguilar J, Hinojosa M (2004) Comparative study of microwave and conventional processing of MgAl2O4-based materials. Ceram Int 30(6):893–900. https://doi.org/10.1016/j.ceramint.2003.10.010

    Article  Google Scholar 

  25. Lamara S, Redaoui D, Sahnoune F, Saheb N (2019) Effect of temperature and magnesia on phase transformation kinetics in stoichiometric and non-stoichiometric cordierite ceramics prepared from kaolinite precursors. J Therm Anal Calorim 137(1):11–23. https://doi.org/10.1007/s10973-018-7923-2

    Article  Google Scholar 

  26. de Almeida EP, Brito DIP, Ferreira HC, de Lucena Lira H, de Lima Santana LN, de Araújo Neves G (2018) Cordierite obtained from compositions containing kaolin waste, talc and magnesium oxide. Ceram Int 44(2):1719–1725. https://doi.org/10.1016/j.ceramint.2017.10.102

    Article  Google Scholar 

  27. Ouali A, Heraiz M, Sahnoune F, Belhouchet H, Fatmi M, Saheb N (2013) Effect of MgO addition on the mechanical and thermal properties of mullite synthesized through reaction sintering of Al2O3 and Algerian kaolin. Am J Modern Physics 2(5):270–275. https://doi.org/10.11648/j.ajmp.20130205.16

    Article  Google Scholar 

  28. Mahdi DF (2015) Preparation of refractory mortar from Iraqi raw materials. Iraq J Appl Physics 11(2):37–40

    Google Scholar 

  29. Boudchicha MR, Rubio F, Achour S (2017) Synthesis of glass ceramics from kaolin and dolomite mixture. Int J Miner Metall Mater 24(2):194–201. https://doi.org/10.1007/s.12613-017-1395-4

    Article  Google Scholar 

  30. Heraiz M, Merrouche A, Saheb N (2006) Effect of MgO addition and sintering parameters on mullite formation through reaction sintering kaolin and alumina. Adv Appl Ceram 105(6):285–290. https://doi.org/10.1179/174367606X146676

    Article  Google Scholar 

  31. Viswabaskaran V, Gnanam FD, Balasubramanian M (2003) Effect of MgO, Y2O3 and boehmite additives on the sintering behaviour of mullite formed from kaolinite-reactive alumina. J Mater Process Technol 142:275–281. https://doi.org/10.1016/S0924-0136(03)00577-6

    Article  Google Scholar 

  32. Gómez-Rodríguez C, Castillo-Rodríguez GA, Rodríguez-Castellanos EA, Vázquez-Rodríguez FJ, López-Perales JF, Aguilar-Martínez JA, Fernández-González D, García-Quiñonez LV, Das-Roy TK, Verdeja LF (2020) Development of an ultra-low carbon MgO refractory doped with α-Al2O3 nanoparticles for the steelmaking industry: a microstructural and thermo-mechanical study. Materials 13:715. https://doi.org/10.3390/ma13030715

    Article  Google Scholar 

Download references

Availability of data and materials

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

I agree.

Corresponding author

Correspondence to Alima Mebrek.

Ethics declarations

Ethical approval

As corresponding author, A. Mebrek, I confirm on behalf of all authors that this manuscript has not been published, and it’s not being submitted to any other journal.

Consent to participate

I agree.

Consent to publish

I agree.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mebrek, A. Sinterability properties of a ceramic synthesized from Algerian kaolin and spent magnesia-carbon refractory bricks. Int J Adv Manuf Technol 117, 823–834 (2021). https://doi.org/10.1007/s00170-021-07637-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07637-8

Keyword

Navigation