Skip to main content
Log in

The development of tube-to-tubesheet welding from automation to digitization

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Tube-to-tubesheet welding is widely used in manufacturing of heat exchangers, steam turbines, condensers, boilers, etc. It has evolved from manual arc welding, automatic welding to digital welding. In the future, it will be toward intelligent welding. However, the key technologies related to tube-to-tubesheet welding are seldom summarized. This paper presents the sensing, positioning, and control methods of tube-to-tubesheet welding in recent decades. The fundamental difference between automatic and digital tube-to-tubesheet welding is whether the operator or the sensors interacts or transmits data with the welding system. The characteristics of tube are obvious and consistent so that vision-aided robotic positioning is the most promising. Moreover, arc length control which is important to tube-to-tubesheet welding has also been reviewed. Three typical sensing methods and five typical control methods are proposed to realize arc length control. The development direction of tubesheet welding is also predicted. This paper has an active influence on the development of pressure vessels and related industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  1. Ge Y, Xu YL, Yu HW, Chen C, Chen SB (2019) A method for detecting central coordinates of girth welds based on inverse compositional AAM in tube-tube sheet welding. In: Chen S, Zhang Y, Feng Z (eds) Transactions on intelligent welding manufacturing. Springer Singapore, Singapore, pp 65–81

  2. Kannan S, Senthil Kumaran S, Kumaraswamidhas LA (2016) An investigation on compression strength analysis of commercial aluminium tube to aluminium 2025 tube plate by using TIG welding process. J Alloys Compd 666:131–143. https://doi.org/10.1016/j.jallcom.2016.01.096

    Article  Google Scholar 

  3. Arias R, Vaamonde E, Vandewynckèle A, Piñeiro E, Veron P (2010) Laser welding of tube to tube-sheet joint in steam generators for nuclear power plants. In: 29th international congress on applications of lasers and electro-optics, ICALEO 2010 - congress proceedings. pp 660–667

  4. Kumar CV, Muthukumaran S, Pradeep A, Kumaran SS (2011) Optimizational study of friction welding of steel tube to aluminum tube plate using an external tool process. Int J Mech Mater Eng 6:300–306. https://doi.org/10.1017/CBO9781107415324.004

    Article  Google Scholar 

  5. Hattingh DG, von Welligh LG, Bernard D, Susmel L, Tovo R, James MN (2016) Semiautomatic friction stir welding of 38 mm OD 6082-T6 aluminium tubes. J Mater Process Technol 238:255–266. https://doi.org/10.1016/j.jmatprotec.2016.07.027

    Article  Google Scholar 

  6. Fan H, Ravala NK, Wikle HC, Chin BA (2003) Low-cost infrared sensing system for monitoring the welding process in the presence of plate inclination angle. J Mater Process Technol 140:668–675. https://doi.org/10.1016/S0924-0136(03)00836-7

    Article  Google Scholar 

  7. Chen D, Cai YH, Luo Y, Wang XX, Chi LX, Tang FS (2020) Measurement and analysis on the thermal and mechanical transfer characteristics of GTA arc affected by arc length. Meas J Int Meas Confed 153:107431. https://doi.org/10.1016/j.measurement.2019.107431

    Article  Google Scholar 

  8. Li X, Li XH, Ge SS, Khyam MO, Luo CM (2017) Automatic welding seam tracking and identification. IEEE Trans Ind Electron 64:7261–7271. https://doi.org/10.1109/TIE.2017.2694399

    Article  Google Scholar 

  9. Viri DP (1982) CRBRP modular steam generator tube-to-tubesheet and shell-closure welding. In: Topical meeting on engineering for nuclear plant construction, operation, and maintenance. Charleston, pp 28–31

  10. Kiefer JH (1982) Welding equipment and process development for inaccessible tube-to-tubesheet welding on a sodium-heated steam generator. In: International conference on welding technology for energy applications. Gatlinburg, pp 573–593

  11. Berbakov PJ (1984) Application of industrial robots in tubesheet cladding and tube to tubesheet welding. In: International conference on robotics and remote handling in the nuclear industry. Toronto, pp 23–27

  12. Dongming W, Zengfu G, Li T, Feng T (1995) The technical summary of tube-sheet welding of heat-exchangers in China and out of China. Press Vessel Technol 12:48–53

    Google Scholar 

  13. Min L (2012) Development of hanging tube-sheet welder head. Chem Equip Technol 33:54–56. https://doi.org/10.16759/j.cnki.issn.1007-7251.2012.05.011

    Article  Google Scholar 

  14. Qunzhou S (2009) The application of gantry tube-to-tubesheet automatic welding machine in chemical industry. Weld Technol 38:32–34. https://doi.org/10.13846/j.cnki.cn12-1070/tg.2009.04.019

    Article  Google Scholar 

  15. TP040 tube to tube sheet orbital weld head. http://www.huahengweld.com/en/product/422.html. Accessed 2021-06-24

  16. Latifi H (2012) Advanced orbital pipe welding. Lappeenranta University of Technology

  17. Han H, Duan M, Cui Q, Li J (2005) Study on automatic welding process of curved seam with five welding guns. Trans China Weld Inst 26:5–9

    Google Scholar 

  18. MaTig-501 Automatic positioning tube to tube sheet TIG orbital welding system. https://www.mausitalia.it/eng/products/tig-orbital-welding/matig502. Accessed 2021-06-24

  19. XiRobot. http://www.xirobot.com/index.php. Accessed 2021-06-24

  20. Nebot E (2018) Robotics: from automation to intelligent systems. Engineering 4:446–448. https://doi.org/10.1016/j.eng.2018.07.018

    Article  Google Scholar 

  21. AMI robot welding system. http://www.arcmachines.com/products/newest-power-supplies-and-weld-heads/robotic-tube-tubesheet-welding-system. Accessed 2021-06-24

  22. CRPROBOT. http://www.crprobot.com/chanpin/. Accessed 2021-06-24

  23. Polysoude tubesheet welding robot. http://www.polysoude.com.cn/news/305.html. Accessed 2021-06-24 

  24. Rout A, Deepak BBVL, Biswal BB (2019) Advances in weld seam tracking techniques for robotic welding: a review. Robot Comput Integr Manuf 56:12–37. https://doi.org/10.1016/j.rcim.2018.08.003

    Article  Google Scholar 

  25. Li X, Li X, Khyam MO, Ge SS (2017) Robust welding seam tracking and recognition. IEEE Sensors J 17:5609–5617. https://doi.org/10.1109/JSEN.2017.2730280

    Article  Google Scholar 

  26. Wei S, Kong M, Lin T, Chen S (2011) Three-dimensional weld seam tracking for robotic welding by composite sensing technology. Ind Robot 38:500–508. https://doi.org/10.1108/01439911111154072

    Article  Google Scholar 

  27. Jin Z, Li HC, Zhang CH, Wang QY, Gao HM (2017) Online welding path detection in automatic tube-to-tubesheet welding using passive vision. Int J Adv ManufTechnol 90:3075–3084. https://doi.org/10.1007/s00170-016-9649-2

    Article  Google Scholar 

  28. Liu J, Xu X (2018) Research on tube-plate welding robot based on binocular vision. In: International symposium in sensing and instrumentation in IoT era (ISSI). IEEE, pp 1–5

  29. Xu X, Zhou H, Wang J (2015) Design of automatic welding machine for tube plate ring weld of tube type heat exchanger and welding torch orientation simulation. Welded Pipe Tube 38:13–17. https://doi.org/10.19291/j.cnki.1001-3938.2015.12.003

    Article  Google Scholar 

  30. Zhang X (2016) Vision-based research on position and path planning of tube sheet robot welding. Shandong University

  31. Tian Y (2016) Research on the key technology of tube sheet welding robot system. Jiangnan University

  32. Lei T, Wang W, Rong Y, Xiong PF, Huang Y (2020) Cross-lines laser aided machine vision in tube-to-tubesheet welding for welding height control. Opt Laser Technol 121:105796. https://doi.org/10.1016/j.optlastec.2019.105796

    Article  Google Scholar 

  33. Landers RG, Barton K, Devasia S, Kurfess T, Pagilla P, Tomizuka M (2020) A review of manufacturing process control. J Manuf Sci Eng 142. https://doi.org/10.1115/1.4048111

  34. Zhang YM, Yang Y-P, Zhang W, Na S-J (2020) Advanced welding manufacturing: a brief analysis and review of challenges and solutions. J Manuf Sci Eng 142(11):1–77. https://doi.org/10.1115/1.4047947

    Article  Google Scholar 

  35. Wang B, Hu SJ, Sun L, Freiheit T (2020) Intelligent welding system technologies: state-of-the-art review and perspectives. J Manuf Syst 56:373–391. https://doi.org/10.1016/j.jmsy.2020.06.020

    Article  Google Scholar 

  36. Cai J, Lei T (2021) An autonomous positioning method of tube-to-tubesheet welding robot based on coordinate transformation and template matching. IEEE Robot Autom Lett 6:787–794. https://doi.org/10.1109/LRA.2021.3050741

    Article  Google Scholar 

  37. Chu HH, Wang ZY, Luo X (2016) Quality inspection algorithm based on machine vision for tube-sheet welding. Proc IEEE work adv robot its soc impacts, ARSO 2016-Novem: 279–283. https://doi.org/10.1109/ARSO.2016.7736295

  38. Wang L, Yun F, Yao S, Liu J (2016) Measurement method and pipe wall misalignment adjustment algorithm of the pipe butting machine. Meas J Int Meas Confed 94:873–882. https://doi.org/10.1016/j.measurement.2016.09.034

    Article  Google Scholar 

  39. Wu YF, Fu Q, Qi JC, Liu Y, Yang M (2018) Development of automatic welding machine for tube-to-tubesheet joints of heat exchanger. In: Proceedings of 2018 IEEE 4th information technology and mechatronics engineering conference. pp 641–644

  40. Lageose MM (2000) Semiautomatic tube welding apparatus, USA patent

  41. Wang XW (2014) Three-dimensional vision-based sensing of GTAW: a review. Int J Adv Manuf Technol 72:333–345. https://doi.org/10.1007/s00170-014-5659-0

    Article  Google Scholar 

  42. He T, Fan Y, Xie Y, Wu Q (2013) Positioning method for a visual guiding system in a laser welding machine. Sixth Int Symp Precis Mech Meas 8916:89162A. https://doi.org/10.1117/12.2035699

    Article  Google Scholar 

  43. Pinto-Lopera JE, Motta JMST, Alfaro SCA (2016) Real-time measurement of width and height of weld beads in GMAW processes. Sensors (Switzerland) 16:1–14. https://doi.org/10.3390/s16091500

    Article  Google Scholar 

  44. Lee B, Nguyen H (2015) Development of laser-vision system for three-dimensional circle detection and radius measurement. Opt - Int J Light Electron Opt 126:5412–5419. https://doi.org/10.1016/j.ijleo.2015.09.131

    Article  Google Scholar 

  45. Li Y, Wang QL, Fan Z, Chen H, Sun Y (2010) Aperture detection and alignment control based on structured light vision. Proc 29th Chinese control conf CCC’10 3773–3778

  46. Guo J, Zhu Z, Sun B, Yu Y (2019) Principle of an innovative visual sensor based on combined laser structured lights and its experimental verification. Opt Laser Technol 111:35–44. https://doi.org/10.1016/j.optlastec.2018.09.010

    Article  Google Scholar 

  47. Xiong J, Zhang G (2013) Online measurement of bead geometry in GMAW-based additive manufacturing using passive vision. Meas Sci Technol 24(11):5103. https://doi.org/10.1088/0957-0233/24/11/115103

    Article  Google Scholar 

  48. Shen H, Wu J, Lin T, Chen S (2008) Arc welding robot system with seam tracking and weld pool control based on passive vision. Int J Adv Manuf Technol 39:669–678. https://doi.org/10.1007/s00170-007-1257-8

    Article  Google Scholar 

  49. Xiong J, Pi Y, Chen H (2019) Deposition height detection and feature point extraction in robotic GTA-based additive manufacturing using passive vision sensing. Robot Comput Integr Manuf 59:326–334. https://doi.org/10.1016/j.rcim.2019.05.006

    Article  Google Scholar 

  50. Jin Z, Zhang C, Li H, Wang Z (2017) Visual sensing based image processing of auto tube-sheet welding. Trans China Weld Inst 10:117–120

    Google Scholar 

  51. Zemlyakov EV, Babkin KD, Klimova OG, Turichin GA, Elkin VN (2016) Remotely controlled laser welding of tube-to-tube plate joints in the manufacture of heat exchangers. Weld Int 30:479–483. https://doi.org/10.1080/09507116.2015.1090177

    Article  Google Scholar 

  52. Cheng Y, Chen W, Guo P, Zhao J (2018) CirLoc3D-visual location method for robot automatic tube plate welding system. In: International conference on computer, communication and network technology. pp 188–191

  53. Xu S, Wang W (2013) Numerical investigation on weld residual stresses in tube to tube sheet joint of a heat exchanger. Int J Press Vessel Pip 101:37–44. https://doi.org/10.1016/j.ijpvp.2012.10.004

    Article  Google Scholar 

  54. Cobo A, Mirapeix J, Linares F, Piney JA, Solana D, López-Higuera JM (2007) Spectroscopic sensor system for quality assurance of the tube-to-tubesheet welding process in nuclear steam generators. IEEE Sensors J 7:1219–1224

    Article  Google Scholar 

  55. Yamane S (1992) Digital control of torch position and weld pool in MIG welding using image processing device. IEEE Trans Ind Appl 28:607–612. https://doi.org/10.1109/28.137446

    Article  Google Scholar 

  56. Agapakis JE, Katz JM, Friedman JM, Epstein GN (1990) Vision-aided robotic welding. An approach and a flexible implementation. Int J Robot Res 9:17–34. https://doi.org/10.1177/027836499000900502

    Article  Google Scholar 

  57. Kim JS, Son YT, Cho HS, Koh K II (1996) A robust visual seam tracking system for robotic arc welding. Mechatronics 6:141–163. https://doi.org/10.1016/0957-4158(95)00069-0

    Article  Google Scholar 

  58. Zhang Y, Yang X (2012) A calibration method of binocular vision in laser remanufacturing robot. Appl Mech Mater 101–102:804–807. https://doi.org/10.4028/www.scientific.net/AMM.101-102.804

    Article  Google Scholar 

  59. Zhao DB, Yi JQ, Chen SB, Wu L, Chen Q (2003) Extraction of three-dimensional parameters for weld pool surface in pulsed GTAW with wire filler. J Manuf Sci Eng Trans ASME 125:493–503. https://doi.org/10.1115/1.1556400

    Article  Google Scholar 

  60. Ma HB, Wei SC, Lin T, Chen SB, Li LP (2010) Binocular vision system for both weld pool and root gap in robot welding process. Sens Rev 30:116–123. https://doi.org/10.1108/02602281011022706

    Article  Google Scholar 

  61. Fan J, Jing F, Fang Z, Tan M (2017) Automatic recognition system of welding seam type based on SVM method. Int J Adv Manuf Technol 92:989–999. https://doi.org/10.1007/s00170-017-0202-8

    Article  Google Scholar 

  62. Zhang L, Ye Q, Yang W, Jiao J (2014) Weld line detection and tracking via spatial-temporal cascaded Hidden Markov models and cross structured light. IEEE Trans Instrum Meas 63:742–753. https://doi.org/10.1109/TIM.2013.2283139

    Article  Google Scholar 

  63. Zhang K, Chen YX, Gui H, Li DY, Li ZG (2018) Identification of the deviation of seam tracking and weld cross type for the derusting of ship hulls using a wall-climbing robot based on three-line laser structural light. J Manuf Process 35:295–306. https://doi.org/10.1016/j.jmapro.2018.08.014

    Article  Google Scholar 

  64. Sung K, Lee H, Choi YS, Rhee S (2009) Development of a multiline laser vision sensor for joint tracking in welding. Weld J (Miami, Fla) 88(4):79–85

    Google Scholar 

  65. Ding Y, Zhang X, Kovacevic R (2016) A laser-based machine vision measurement system for laser forming. Meas J Int Meas Confed 82:345–354. https://doi.org/10.1016/j.measurement.2015.10.036

    Article  Google Scholar 

  66. Wang J, Wang W, Chen S (2007) Extraction of welding pool shape using linear approximation. Trans China Weld Inst 28:54–56

    Google Scholar 

  67. Ogilvie KS (1992) Modeling of the gas metal arc welding process for control of arc length. University of Michigan

  68. Liu Y, Cook GE, Barnett RJ, Springfield JF (1992) PC-based arc ignition and arc length control system for gas tungsten arc welding. IEEE Trans Ind Appl 28:1160–1165. https://doi.org/10.1109/28.158843

    Article  Google Scholar 

  69. Eguchi K, Yamane S, Sugi H, Kubota T, Oshima K (1999) Application of neural network to arc sensor. Sci Technol Weld Join 4:327–334. https://doi.org/10.1179/136217199101537950

    Article  Google Scholar 

  70. Lei T, Rong Y, Wang H, Huang Y, Li M (2020) A review of vision-aided robotic welding. Comput Ind 123:103326. https://doi.org/10.1016/j.compind.2020.103326

    Article  Google Scholar 

  71. Liu WJ, Guan ZY, Xiao J, Li LY, Yue JF (2019) Research on the seam tracking of narrow gap P-GMAW based on arc sound sensing. Sensors Actuators A Phys 292:205–216. https://doi.org/10.1016/j.sna.2019.04.015

    Article  Google Scholar 

  72. Chu WH, Tung PC (2005) Development of an automatic arc welding system using a sliding mode control. Int J Mach Tools Manuf 45:933–939. https://doi.org/10.1016/j.ijmachtools.2004.10.012

    Article  Google Scholar 

  73. Chen HB, Chen SB, Tao L (2015) The application of robotic welding in the shipbuilding. In: International conference on robotic welding, intelligence and automation. pp 483–492

  74. Chen SB, Lv N (2014) Research evolution on intelligentized technologies for arc welding process. J Manuf Process 16:109–122. https://doi.org/10.1016/j.jmapro.2013.07.002

    Article  Google Scholar 

  75. Umeagukwu C, Maqueira B, Lambert R (1989) Robotic acoustic seam tracking: system development and application. IEEE Trans Ind Electron 36:338–348. https://doi.org/10.1109/41.31496

    Article  Google Scholar 

  76. Kim Y, Rhee S (2001) Development of an arc sensor model using a fuzzy controller in gas metal arc welding. Meas Sci Technol 12:534–541. https://doi.org/10.1088/0957-0233/12/4/320

    Article  Google Scholar 

  77. Li P, Zhang YM (2001) Robust sensing of arc length. IEEE Trans Instrum Meas 50:697–704. https://doi.org/10.1109/19.930442

    Article  Google Scholar 

  78. Umeagukwu CI, Jarzynski J (1989) Application of ultrasonic sensors to robotic seam tracking. IEEE Trans Robot Autom 5:337–344. https://doi.org/10.1109/70.34769

    Article  Google Scholar 

  79. Estochen EL, Neuman CP, Prinz FB (1984) Application of acoustic sensors to robotic seam tracking. IEEE Trans Ind Electron IE-31:219–224. https://doi.org/10.1109/TIE.1984.350038

    Article  Google Scholar 

  80. Lv N, Zhong JY, Chen HB, Lin T, Chen SB (2014) Real-time control of welding penetration during robotic GTAW dynamical process by audio sensing of arc length. Int J Adv Manuf Technol 74:235–249. https://doi.org/10.1007/s00170-014-5875-7

    Article  Google Scholar 

  81. Lv N, Xu YL, Li SC, Yu XW, Chen SB (2017) Automated control of welding penetration based on audio sensing technology. J Mater Process Technol 250:81–98. https://doi.org/10.1016/j.jmatprotec.2017.07.005

    Article  Google Scholar 

  82. Xu YL, Zhong JY, Ding MY, Chen HB, Chen SB (2013) The acquisition and processing of real-time information for height tracking of robotic GTAW process by arc sensor. Int J Adv Manuf Technol 65:1031–1043. https://doi.org/10.1007/s00170-012-4237-6

    Article  Google Scholar 

  83. Le J, Zhang H, Chen XQ (2018) Realization of rectangular fillet weld tracking based on rotating arc sensors and analysis of experimental results in gas metal arc welding. Robot Comput Integr Manuf 49:263–276. https://doi.org/10.1016/j.rcim.2017.06.004

    Article  Google Scholar 

  84. Baek D, Moon HS, Park SH (2017) Development of an automatic orbital welding system with robust weaving width control and a seam-tracking function for narrow grooves. Int J Adv Manuf Technol 93:767–777. https://doi.org/10.1007/s00170-017-0562-0

    Article  Google Scholar 

  85. Shi YH, Yoo WS, Na SJ (2006) Mathematical modelling of rotational arc sensor in GMAW and its applications to seam tracking and endpoint detection. Sci Technol Weld Join 11:723–731. https://doi.org/10.1179/174329306X153196

    Article  Google Scholar 

  86. Lima EJ, Bracarense AQ (2010) Robotic shielded metal arc welding. Weld J (Miami, Fla) 89(8):166s–171s

    Google Scholar 

  87. Kah P, Shrestha M, Hiltunen E, Martikainen J (2015) Robotic arc welding sensors and programming in industrial applications. Int J Mech Mater Eng 10. https://doi.org/10.1186/s40712-015-0042-y

  88. Zhang Z, Chen S (2017) Real-time seam penetration identification in arc welding based on fusion of sound, voltage and spectrum signals. J Intell Manuf 28:207–218. https://doi.org/10.1007/s10845-014-0971-y

    Article  Google Scholar 

  89. Zhang ZF, Chen HB, Xu YL, Zhong JY, Lv N, Chen SB (2015) Multisensor-based real-time quality monitoring by means of feature extraction, selection and modeling for Al alloy in arc welding. Mech Syst Signal Process 60:151–165. https://doi.org/10.1016/j.ymssp.2014.12.021

    Article  Google Scholar 

  90. Zhang Z, Yu H, Lv N, Chen SB (2013) Real-time defect detection in pulsed GTAW of Al alloys through on-line spectroscopy. J Mater Process Technol 213:1146–1156. https://doi.org/10.1016/j.jmatprotec.2013.01.012

    Article  Google Scholar 

  91. Huang YM, Chen SB (2020) Key technologies of intelligentized welding manufacturing-the spectral diagnosis technology for pulsed gas tungsten arc welding of aluminum alloys, Springer

  92. Li PJ, Zhang YM (2001) Precision sensing of arc length in GTAW based on arc light spectrum. J Manuf Sci Eng Trans ASME 123:62–65. https://doi.org/10.1115/1.1349719

    Article  Google Scholar 

  93. Yu H, Chen SB (2011) A study of arc length in pulsed GTAW of aluminum alloy by means of arc plasma spectrum analysis. In: Robotic welding, intelligence and automation. Springer, Berlin, Heidelberg, pp 219–227

  94. Orbitalum GmbH. https://www.orbitalum.com/en/products/product-details/orbimat_300_ca.html. Accessed 2021-06-24 

  95. Keyhole TIG Limited. https://www.k-tig.com/2017-blog/22-welding-automation-technologies-to-improve-productivity

  96. Polysoude tube to tubesheet welding heads. https://www.polysoude.com/orbital-and-automated-welding/orbital-tube-to-tubesheet-welding. Accessed 2021-06-24 

  97. Karafi MR, Narimani R, Hojjat Y, Gheybi M (2010) Study on automatic control of arc gap in robotic TIG welding. Int J Adv Manuf Technol 50:953–960. https://doi.org/10.1007/s00170-010-2564-z

    Article  Google Scholar 

  98. Xu YL, Yu HW, Zhong JY, Lin T, Chen SB (2012) Real-time seam tracking control technology during welding robot GTAW process based on passive vision sensor. J Mater Process Technol 212:1654–1662. https://doi.org/10.1016/j.jmatprotec.2012.03.007

    Article  Google Scholar 

  99. Thomsen JS (2005) Feedback linearization based arc length control for gas metal arc welding. In: Proceedings of the American control conference. pp 3568–3573

  100. Hu P, Huang J, Zeng M (2017) Application of fuzzy control method in gas metal arc welding. Int J Adv Manuf Technol 92:1769–1775. https://doi.org/10.1007/s00170-017-0245-x

    Article  Google Scholar 

  101. Wang Q, Qi B, Cong B, Yang M (2017) Output characteristic and arc length control of pulsed gas metal arc welding process. J Manuf Process 29:427–437. https://doi.org/10.1016/j.jmapro.2017.08.007

    Article  Google Scholar 

  102. Chen F (2017) Study on arc length automation control of TIG welding. Southwest Jiaotong University, Southwest Jiaotong

  103. Mousavi Anzehaee M, Haeri M (2011) Welding current and arc voltage control in a GMAW process using ARMarkov based MPC. Control Eng Pract 19:1408–1422. https://doi.org/10.1016/j.conengprac.2011.07.015

    Article  Google Scholar 

  104. Zhou J, Zhou Y, Wang B, Zang J (2019) Human–cyber–physical systems (HCPSs) in the context of new-generation intelligent manufacturing. Engineering 5:624–636. https://doi.org/10.1016/j.eng.2019.07.015

    Article  Google Scholar 

  105. Wang Q, Jiao W, Zhang YM (2020) Deep learning-empowered digital twin for visualized weld joint growth monitoring and penetration control. J Manuf Syst 57:429–439. https://doi.org/10.1016/j.jmsy.2020.10.002

    Article  Google Scholar 

  106. Wang Q, Jiao W, Wang P, Zhang YM (2021) Digital twin for human-robot interactive welding and welder behavior analysis. IEEE/CAA J Autom Sin 8:334–343. https://doi.org/10.1109/JAS.2020.1003518

    Article  Google Scholar 

  107. Gopalakrishnan S, Hartman NW, Sangid MD (2020) Model-based feature information network (MFIN): a digital twin framework to integrate location-specific material behavior within component design, manufacturing, and performance analysis. Integr Mater Manuf Innov 9:394–409. https://doi.org/10.1007/s40192-020-00190-4

    Article  Google Scholar 

Download references

Funding

This research is supported by the State Key Lab of Digital Manufacturing Equipment and Technology (DMETKF2020026), Major Project of Science Research of Hubei Province (2020BAB033), National Natural Science Foundation of China (51805190), Major Project of Science Research of Hubei Province (2018AAA027), and Launch Fund of Huazhong University of Science and Technology (05), The Fundamental Research Funds for the Central Universities(213304001).

Author information

Authors and Affiliations

Authors

Contributions

Ting Lei: writing original draft, visualization, and conceptualization. Chaoqun Wu: review and editing. Youmin Rong: investigation and formal analysis. Yu Huang: funding acquisition and project administration.

Corresponding authors

Correspondence to Ting Lei or Chaoqun Wu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, T., Wu, C., Rong, Y. et al. The development of tube-to-tubesheet welding from automation to digitization. Int J Adv Manuf Technol 116, 779–802 (2021). https://doi.org/10.1007/s00170-021-07379-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07379-7

Keywords

Navigation