Skip to main content
Log in

3D numerical modeling and experimental validation of machining Nomex® honeycomb materials

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Machining of Nomex® honeycomb materials is the biggest challenge in industry because of the complex forms and geometry of the honeycomb structure. The latter is characterized by a low density with orthotropic mechanical behavior. The thin walls of the composite structure make the shaping of this material very difficult. Studying interactions between the cutting tool and material, cutting forces, and chip formation allow to understand the machining process of Nomex® honeycomb. This paper presents 3D numerical modeling of machining Nomex® honeycomb using different orthotropic approaches and failure criteria: (i) monolayer isotropic approach, (ii) monolayer orthotropic approach with Tsai-Wu failure criteria, and (iii) monolayer orthotropic approach with Hashin failure criteria. A comparison between experiments and numerical cutting forces was performed to validate the proposed model. The interaction between the tool and the honeycomb walls, which make it possible to observe the different stages of the chip formation process, was carefully modeled.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability

All numerical data presented in this paper are available.

References

  1. Lamb AJ (2007) Experimental investigation and numerical modelling of composite-honeycomb materials used in formula 1 crash structures. Dissertation, Cranfield University. https://doi.org/10.1017/CBO9781107415324.004

  2. Fischer S, Drechsler K, Kilchert S, Johnson A (2009) Mechanical tests for foldcore base material properties. Compos Part A 40:1941–1952. https://doi.org/10.1016/j.compositesa

    Article  Google Scholar 

  3. Foo CC, Chai GB, Seah LK (2007) Mechanical properties of Nomex material and Nomex honeycomb structure. Compos Struct 80:588–594. https://doi.org/10.1016/j.compstruct.2006.07.010

    Article  Google Scholar 

  4. Kim DS, Lee JR (1997) Compressive mechanical properties of the nomex/thermoset honeycomb cores. Polym Adv Technol 8:1–7. https://doi.org/10.1002/(SICI)1099-1581(199701)8:1<1::AID-PAT601>3.0.CO;2-G

    Article  Google Scholar 

  5. Zinno A, Prota A, Di Maio E, Bakis CE (2011) Experimental characterization of phenolic-impregnated honeycomb sandwich structures for transportation vehicles. Compos Struct 93:2910–2924. https://doi.org/10.1016/j.compstruct.2011.05.012

    Article  Google Scholar 

  6. Aminanda Y, Castanie B, Barrau JJ, Thevenet P (2009) Experimental and numerical study of compression after impact of sandwich structures with metallic skins. Compos Sci Technol 69:50–59. https://doi.org/10.1016/j.compscitech.2007.10.045

    Article  Google Scholar 

  7. Heimbs S (2008) Sandwichstrukturen mit Wabenkern: Experimentelle und numerische Analyse des Schädigungsverhaltens unter statischer und kurzzeitdynamischer Belastung. Institut für Verbundwerkstoffe GmbH

  8. Hou B, Ono A, Abdennadher S, Pattofatto S, Li YL, Zhao H (2011) Impact behavior of honeycombs under combined shear-compression. Part I: experiments. Int J Solids Struct 48:698–705. https://doi.org/10.1016/j.ijsolstr.2010.11.005

    Article  MATH  Google Scholar 

  9. Mohr D, Doyoyo M (2004) Deformation-induced folding systems in thin-walled monolithic hexagonal metallic honeycomb. Int J Solids Struct 41:3353–3377. https://doi.org/10.1016/j.ijsolstr.2004.01.014

    Article  MATH  Google Scholar 

  10. Wang Z, Qin Q, Chen S, Yu X, Li H, Wang TJ (2017) Compressive crushing of novel aluminum hexagonal honeycombs with perforations: experimental and numerical investigations. Int J Solids Struct 126:187–195. https://doi.org/10.1016/j.ijsolstr.2017.08.005

    Article  Google Scholar 

  11. Keshavanarayana SR, Shahverdi H, Kothare A, Yang C, Bingenheimer J (2017) The effect of node bond adhesive fillet on uniaxial in-plane responses of hexagonal honeycomb core. Compos Struct 175:111–122. https://doi.org/10.1016/j.compstruct.2017.05.010

    Article  Google Scholar 

  12. Zhang ZJ, Han B, Zhang QC, Jin F (2017) Free vibration analysis of sandwich beams with honeycomb-corrugation hybrid cores. Compos Struct 171:335–344. https://doi.org/10.1016/j.compstruct.2017.03.045

    Article  Google Scholar 

  13. Nasution MRE, Watanabe N, Kondo A (2015) Numerical study on thermal buckling of CFRP–Al honeycomb sandwich composites based on homogenization–localization analysis. Compos Struct 132:709–719. https://doi.org/10.1016/j.compstruct.2015.06.009

    Article  Google Scholar 

  14. Lhuissier P, Laszczyk L (2012) Caractérisation des structures sandwich. Tech l’Ingénieur, Ref M5815:v1

    Google Scholar 

  15. Hosseini SMH, Gabbert U (2013) Numerical simulation of the Lamb wave propagation in honeycomb sandwich panels: a parametric study. Compos Struct 97:189–201. https://doi.org/10.1016/j.compstruct.2012.09.055

    Article  Google Scholar 

  16. Manet V (2012) The use of Ansys to calculate sandwich structures. arXiv. preprint arXiv 58:1899–1905. https://doi.org/10.1016/S0266-3538(98)00010-4

    Article  Google Scholar 

  17. Bianchi G, Aglietti GS, Richardson G (2012) Static and fatigue behaviour of hexagonal honeycomb cores under in-plane shear loads. Appl Compos Mater 19(2):97–115. https://doi.org/10.1007/s10443-010-9184-5

    Article  Google Scholar 

  18. Seemann R, Krause D (2017) Numerical modelling of Nomex honeycomb sandwich cores at meso-scale level. Compos Struct 159:702–718. https://doi.org/10.1016/j.compstruct.2016.09.071

    Article  Google Scholar 

  19. Foo CC, Chai GB, Seah LK (2008) A model to predict low-velocity impact response and damage in sandwich composites. Compos Sci Technol 68(6):1348–1356. https://doi.org/10.1016/j.compscitech.2007.12.007

    Article  Google Scholar 

  20. Mancha ÁJ (2012) Optimization of lightweight sandwich structures of commercial aircraft interior parts subjected to low-velocity impact. Universidad Pontificia Comillas Madrid, Escuela Tecnica Superior de Ingenierla (ICAI)

    Google Scholar 

  21. Iváñez del Pozo I, Moure Cuadrado MM, García Castillo SK, Sánchez Sáez S. (2015) The oblique impact response of composite sandwich plates. doi:https://doi.org/10.1016/j.compstruct.2015.08.035

  22. Zhu S, Chai GB (2013) Damage and failure mode maps of composite sandwich panel subjected to quasi-static indentation and low velocity impact. Compos Struct 101:204–214. https://doi.org/10.1016/j.compstruct.2013.02.010

    Article  Google Scholar 

  23. Roy R, Kweon JH, Choi JH (2014) Meso-scale finite element modeling of NomexTM honeycomb cores. Adv Compos Mater 23(1):17–29. https://doi.org/10.1080/09243046.2013.862382

    Article  Google Scholar 

  24. Roy R, Park SJ, Kweon JH, Choi JH (2014) Characterization of Nomex honeycomb core constituent material mechanical properties. Compos Struct 117:255–266. https://doi.org/10.1016/j.compstruct.2014.06.033

    Article  Google Scholar 

  25. Heimbs S (2009) Virtual testing of sandwich core structures using dynamic finite element simulations. Comput Mater Sci 45(2):205–216. https://doi.org/10.1016/j.commatsci.2008.09.017

    Article  Google Scholar 

  26. Roy R, Nguyen KH, Park YB, Kweon JH, Choi JH (2014) Testing and modeling of Nomex™ honeycomb sandwich Panels with bolt insert. Compos Part B 56:762–769. https://doi.org/10.1016/j.compositesb.2013.09.006

    Article  Google Scholar 

  27. Kilchert S (2013) Nonlinear finite element modelling of degradation and failure in folded core composite sandwich structures. Faculty of Aerospace Engineering and Geodesy of the Universität Stuttgart, Dissertation

    Google Scholar 

  28. Seemann RALF, Krause DIETER (2014) Numerical modelling of nomex honeycomb cores for detailed analyses of sandwich panel joints. In 11th World Congress on Computational Mechanics (WCCM XI)

  29. Asprone D, Auricchio F, Menna C, Morganti S, Prota A, Reali A (2013) Statistical finite element analysis of the buckling behavior of honeycomb structures. Compos Struct 105:240–255. https://doi.org/10.1016/j.compstruct.2013.05.014

    Article  Google Scholar 

  30. Gornet L, Marguet S, Marckmann G (2007) Modeling of Nomex® honeycomb cores, linear and nonlinear behaviors. Mech Adv Mater Struct 14(8):589–601. https://doi.org/10.1080/15376490701675370

    Article  Google Scholar 

  31. Hähnel F, Wolf K (2008) Simulation of the damage tolerance behaviour of CFRP/Honeycomb sandwich based on measured properties of the resin impregnated core paper. In Proc. of the 13th International Conference on Composite Materials, Stockholm. doi:https://doi.org/10.1007/978-3-540-79432-5

  32. Aktay L, Johnson AF, Kröplin BH (2008) Numerical modelling of honeycomb core crush behaviour. Eng Fract Mech 75(9):2616–2630. https://doi.org/10.1016/j.engfracmech.2007.03.008

    Article  Google Scholar 

  33. Giglio M, Manes A, Gilioli A (2012) Investigations on sandwich core properties through an experimental–numerical approach. Compos Part B 43(2):361–374. https://doi.org/10.1016/j.compositesb.2011.08.016

    Article  Google Scholar 

  34. Qiu K, Ming W, Shen L, An Q, Chen M (2017) Study on the cutting force in machining of aluminum honeycomb core material. Compos Struct 164:58–67. https://doi.org/10.1016/j.compstruct.2016.12.060

    Article  Google Scholar 

  35. Sun J, Dong Z, Wang X, Wang Y, Qin Y, Kang R (2020) Simulation and experimental study of ultrasonic cutting for aluminum honeycomb by disc cutter. Ultrasonics 103:1–8. https://doi.org/10.1016/j.ultras.2020.106102

    Article  Google Scholar 

  36. Nasir MA, Khan Z, Farooqi I, Nauman S, Anas S, Khalil S, Pasha A, Khan Z, Shah M, Qaiser H, Ata R (2015) Transverse shear behavior of a nomex core for sandwich panels. Mech Compos Mater 50:733–738. https://doi.org/10.1007/s11029-015-9462-2

    Article  Google Scholar 

  37. Paris F, Jackson KE (2001) A study of failure criteria of fibrous composite materials

  38. Padhi GS, Shenoi RA, Moy SSJ, Hawkins GL (1997) Progressive failure and ultimate collapse of laminated composite plates in bending. Compos Struct 40:277–291. https://doi.org/10.1016/S0263-8223(98)00030-0

    Article  Google Scholar 

  39. Perillo G, Vedvik NP, Echtermeyer AT (2011) Numerical application of three-dimensional failure criteria for laminated composite materials. Norwegian University of Science and Technology (NTNU), Department of Engineering Design and Materials, pp 5–6

    Google Scholar 

  40. Guo-dong JL, Bao-lai W (2009) Progressive damage and nonlinear analysis of 3D four-directional braided composites under unidirectional tension. Compos Struct 89:126–133. https://doi.org/10.1016/j.compstruct.2008.07.016

    Article  Google Scholar 

  41. Zhao L, Qin T, Chen Y, Zhang J (2014) Three-dimensional progressive damage models for cohesively bonded composite joint. J Compos Mater 48:707–721. https://doi.org/10.1177/0021998313477169

    Article  Google Scholar 

  42. Zenia S (2017) Modélisation numérique de l’usinage des matériaux composites à matrice polymère et fibres longues de carbone. PhD thesis, Université de Lorraine

  43. Zenia S, Ben Ayed L, Nouari M, Delamézière A (2015) Numerical prediction of the chip formation process and induced damage during the machining of carbon/epoxy composites. Int J Mech Sci 90:89–101. https://doi.org/10.1016/j.ijmecsci.2014.10.018

    Article  Google Scholar 

  44. Lasri L, Nouari M, El Mansori M (2009) Modelling of chip separation in machining unidirectional FRP composites by stiffness degradation concept. Compos Sci Technol 69:684–692. https://doi.org/10.1016/j.compscitech.2009.01.004

    Article  Google Scholar 

  45. Boutrih L, Ayed L Ben, Nouari M. (2021) Modeling of the interface delamination process when machining hybrid multi-material assemblies. Int J Adv Manuf Technol 112:1903–1916. https://doi.org/10.1007/s00170-020-06531-z

    Article  Google Scholar 

  46. Liu PF, Zheng JY (2008) Progressive failure analysis of carbon fiber/epoxy composite laminates using continuum damage mechanics. Mater Sci Eng A 485:711–717. https://doi.org/10.1016/j.msea.2008.02.023

    Article  Google Scholar 

  47. Gemkow KS, Vignjevic R (2013) Strain-softening in continuum damage models : investigation of MAT _ 058. 9th Euopean LS-DYNA Conf

  48. Chai GB, Zhu SA (2011) Review of low-velocity impact on sandwich structures. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, n.d.:1–54

  49. Jaafar M, Atlati S, Makich H, Nouari M, Moufki A, Julliere B (2017) A 3D FE modeling of machining process of Nomex® honeycomb core: influence of the cell structure behaviour and specific tool geometry. Procedia CIRP 58:505–510. https://doi.org/10.1016/j.procir.2017.03.255

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express their thanks and appreciation to the members of the following organizations for their financial support: Evatec-tools group and National French Research Agency (ANR). LARIOPAC Labcom project under Grant No. ANR-13-LAB2-0002.

Funding

No funding was obtained for this work except the salary of the PhD student given by the French Ministry of high education and research.

Author information

Authors and Affiliations

Authors

Contributions

M. Jaafar obtained his PhD from LEM3 Laboratory at Lorraine University and performed in this work the literature study of this area of research and performed the model for numerical simulations. He also participated to writing the paper.

Nouari is a full professor and the first supervisor of the work. He provided fundamental ideas and all needed support conditions. M. Nouari organized the proof reading and critical revisions.

H. Makich is currently an associate professor and the second supervisor of this thesis project. He was in charge the experimental validation of the model. All authors read and approved the final manuscript.

M. Moufki is a full professor; his contribution to the work concerns the preparation of simulations. He also participates to the organization of the proof reading and critical revisions

All authors participated to read and approve the final manuscript.

Corresponding author

Correspondence to Mohammed Nouari.

Ethics declarations

Ethical approval

All ethical responsibilities were respected by the authors.

Consent to participate

All authors contribute and participate to work carried out in article.

Consent to publish

The authors of this paper agree to publish the results of this work carried out in the thesis of M. Jaafar.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaafar, M., Nouari, M., Makich, H. et al. 3D numerical modeling and experimental validation of machining Nomex® honeycomb materials. Int J Adv Manuf Technol 115, 2853–2872 (2021). https://doi.org/10.1007/s00170-021-07336-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07336-4

Keywords

Navigation