Skip to main content

Advertisement

Log in

3D printing of porcelain: finite element simulation of anisotropic sintering

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Sintering is a key step that determines the mechanical performances and shape quality of 3D printed ceramics. In this domain, there is an increasing interest in complex thin structures and low fill density shapes. However, these complex structures may suffer from distortions by gravity forces developed on the light structure, friction with supports, shrinkage anisotropy, or thermal gradients. Finite element simulation of the sintering process is then of high importance for predicting the specimens distortions. This paper focuses on the identification of the model parameters in the special case of anisotropic sintering of porcelain with final stage swelling. This study points out the printed specimen high resistance to high temperature shear deformation due to the alignment of the printed rods. A mesoscale simulation has been carried out to explain this mechanism. The resulting model was tested for the sintering of a thin wall cup shape.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data is published with the paper.

Abbreviations

θ :

Porosity

\( \dot{\theta} \) :

Porosity rate (s−1)

\( \underset{\_}{\sigma } \) :

Stress tensor (N m−2)

σ eq :

Equivalent stress (N m−2)

\( \underset{\_}{\dot{\varepsilon}} \) :

Strain rate tensor (s−1)

\( {\dot{\varepsilon}}_{eq} \) :

Equivalent strain rate (s−1)

\( {\dot{\varepsilon}}_r \) :

Radial strain rate component (s−1)

\( {\dot{\varepsilon}}_z \) :

Z axis strain rate component (s−1)

\( {\dot{\varepsilon}}_{sintering} \) :

Free strain rate due to sintering (s−1)

φ :

Shear modulus

ψ :

Bulk modulus

θ c :

Critical porosity for sintering final stage

Pl :

Sintering stress (Pa)

P s :

Pore gas pressure in closed porosity (Pa)

\( \mathbbm{i} \) :

Identity tensor

α :

Surface energy (J m−2)

r :

Grain radius (m)

\( \dot{e} \) :

Trace of the strain rate tensor (s−1)

η :

Material viscosity (Pa s)

η r :

Radial component of the viscosity (Pa s)

η z :

Z component of the viscosity (Pa s)

η 0 :

Viscosity pre-exponential factor (Pa s)

η 0r :

Radial component of the viscosity pre-exponential factor (Pa s)

η 0z :

Z component of the viscosity pre-exponential factor (Pa s)

Q :

Viscosity activation energy (J mol−1)

R :

Gas constant 8.314 (J mol−1 K−1)

T :

Temperature (K)

σ yz :

YZ stress component (N m−2)

References

  1. Chartier T, Duterte C, Delhote N, Baillargeat D, Verdeyme S, Delage C, Chaput C (2008) Fabrication of millimeter wave components via ceramic stereo- and microstereolithography processes. J Am Ceram Soc 91:2469–2474. https://doi.org/10.1111/j.1551-2916.2008.02482.x

    Article  Google Scholar 

  2. Deubel M, von Freymann G, Wegener M, Pereira S, Busch K, Soukoulis CM (2004) Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat Mater 3:444–447. https://doi.org/10.1038/nmat1155

    Article  Google Scholar 

  3. Li Y, Mao H, Hu P, Hermes M, Lim H, Yoon J, Luhar M, Chen Y, Wu W (2019) Bioinspired functional surfaces enabled by multiscale stereolithography. Adv Mater Technol 4:1800638. https://doi.org/10.1002/admt.201800638

    Article  Google Scholar 

  4. Yang Y, Li X, Zheng X, Chen Z, Zhou Q, Chen Y (2018) 3D-printed biomimetic super-hydrophobic structure for microdroplet manipulation and oil/water separation. Adv Mater 30:1704912. https://doi.org/10.1002/adma.201704912

    Article  Google Scholar 

  5. He L, Fei F, Wang W, Song X (2019) Support-free ceramic stereolithography of complex overhanging structures based on an elasto-viscoplastic suspension feedstock. ACS Appl Mater Interfaces 11:18849–18857. https://doi.org/10.1021/acsami.9b04205

    Article  Google Scholar 

  6. Li Z, Chen Z, Liu J, Fu Y, Liu C, Wang P, Jiang M, Lao C (2020) Additive manufacturing of lightweight and high-strength polymer-derived SiOC ceramics. Virtual Phys Prototyp 15:163–177. https://doi.org/10.1080/17452759.2019.1710919

    Article  Google Scholar 

  7. Zhang H, Yang Y, Hu K, Liu B, Liu M, Huang Z (2020) Stereolithography-based additive manufacturing of lightweight and high-strength Cf/SiC ceramics. Addit Manuf 34:101199. https://doi.org/10.1016/j.addma.2020.101199

    Article  Google Scholar 

  8. Feilden E, Ferraro C, Zhang Q, García-Tuñón E, D’Elia E, Giuliani F, Vandeperre L, Saiz E (2017) 3D printing bioinspired ceramic composites. Sci Rep 7:13759. https://doi.org/10.1038/s41598-017-14236-9

    Article  Google Scholar 

  9. Peng E, Zhang D, Ding J (2018) Ceramic robocasting: recent achievements, potential, and future developments. Adv Mater 30:1802404. https://doi.org/10.1002/adma.201802404

    Article  Google Scholar 

  10. Chartier T, Badev A (2013) Rapid prototyping of ceramics. In: Handbook of advanced ceramics. Elsevier, pp 489–524.

  11. Chen Z, Li Z, Li J, Liu C, Lao C, Fu Y, Liu C, Li Y, Wang P, He Y (2019) 3D printing of ceramics: a review. J Eur Ceram Soc 39:661–687. https://doi.org/10.1016/j.jeurceramsoc.2018.11.013

    Article  Google Scholar 

  12. Deckers J, Vleugels J, Kruth JP (2014) Additive manufacturing of ceramics: a review. J Ceram Sci Technol 5:245–260. https://doi.org/10.4416/JCST2014-00032

    Article  Google Scholar 

  13. Wang J-C, Dommati H, Hsieh S-J (2019) Review of additive manufacturing methods for high-performance ceramic materials. Int J Adv Manuf Technol 103:2627–2647. https://doi.org/10.1007/s00170-019-03669-3

    Article  Google Scholar 

  14. Jiang J, Xu X, Stringer J (2018) Support structures for additive manufacturing: a review. J Manuf Mater Process 2:64. https://doi.org/10.3390/jmmp2040064

    Article  Google Scholar 

  15. Du X, Fu S, Zhu Y (2018) 3D printing of ceramic-based scaffolds for bone tissue engineering: an overview. J Mater Chem B 6:4397–4412. https://doi.org/10.1039/C8TB00677F

    Article  Google Scholar 

  16. Miyanaji H, Orth M, Akbar JM, Yang L (2018) Process development for green part printing using binder jetting additive manufacturing. Front Mech Eng 13:504–512. https://doi.org/10.1007/s11465-018-0508-8

    Article  Google Scholar 

  17. M’Barki A, Bocquet L, Stevenson A (2017) Linking rheology and printability for dense and strong ceramics by direct ink writing. Sci Rep 7:6017. https://doi.org/10.1038/s41598-017-06115-0

    Article  Google Scholar 

  18. Bae C-J, Halloran JW (2011) Influence of residual monomer on cracking in ceramics fabricated by stereolithography. Int J Appl Ceram Technol 8:1289–1295. https://doi.org/10.1111/j.1744-7402.2010.02578.x

    Article  Google Scholar 

  19. Li H, Song L, Sun J, Ma J, Shen Z (2019) Dental ceramic prostheses by stereolithography-based additive manufacturing: potentials and challenges. Adv Appl Ceram 118:30–36. https://doi.org/10.1080/17436753.2018.1447834

    Article  Google Scholar 

  20. Manière C, Kerbart G, Harnois C, Marinel S (2020) Modeling sintering anisotropy in ceramic stereolithography of silica. Acta Mater 182:163–171. https://doi.org/10.1016/j.actamat.2019.10.032

    Article  Google Scholar 

  21. Tarabeux J, Pateloup V, Michaud P, Chartier T (2018) Development of a numerical simulation model for predicting the curing of ceramic systems in the stereolithography process. J Eur Ceram Soc 38:4089–4098. https://doi.org/10.1016/j.jeurceramsoc.2018.03.052

    Article  Google Scholar 

  22. Withell A, Diegel O, Grupp I, et al (2011) Porous ceramic filters through 3D printing. In: Innovative developments in virtual and physical prototyping. CRC Press, pp 313–318

  23. Ohji T (2018) Additive manufacturing of ceramic components. Synthesiology 11:81–93. https://doi.org/10.5571/synth.11.2_81

    Article  Google Scholar 

  24. Alvarado-Contreras JA, Olevsky EA, German RM (2013) Modeling of gravity-induced shape distortions during sintering of cylindrical specimens. Mech Res Commun 50:8–11. https://doi.org/10.1016/j.mechrescom.2013.02.007

    Article  Google Scholar 

  25. Alvarado-Contreras JA, Olevsky EA, Maximenko AL, German RM (2014) A continuum approach for modeling gravitational effects on grain settling and shape distortion during liquid phase sintering of tungsten heavy alloys. Acta Mater 65:176–184. https://doi.org/10.1016/j.actamat.2013.10.059

    Article  Google Scholar 

  26. Shanshan Z, Hadi M, Li Y, et al (2014) An experimental study of ceramic dental porcelain materials using a 3D print (3DP) process. In: Conference: 2014 Annual International Solid Freeform Fabrication Symposium (SFF Symp 2014), At Austin, TX, USA. pp 991–1011

  27. Riley CM (1951) Relation of chemical properties to the bloating of clays. J Am Ceram Soc 34:121–128. https://doi.org/10.1111/j.1151-2916.1951.tb11619.x

    Article  Google Scholar 

  28. Manière C, Saccardo E, Lee G, McKittrick J, Molinari A, Olevsky EA (2018) Swelling negation during sintering of sterling silver: an experimental and theoretical approach. Results Phys 11:79–84. https://doi.org/10.1016/j.rinp.2018.08.035

    Article  Google Scholar 

  29. Manière C, Zahrah T, Olevsky EA (2017) Fluid dynamics thermo-mechanical simulation of sintering: uniformity of temperature and density distributions. Appl Therm Eng 123:603–613. https://doi.org/10.1016/j.applthermaleng.2017.05.116

    Article  Google Scholar 

  30. Lynnora O G, Magdi B A, Reid J C, et al (2018) Mitigating distortion during sintering of binder jet printed ceramics. In: Conference: Solid Freeform Fabrication Symposium 2018. pp 135–142

  31. Eshraghi S, Das S (2012) Micromechanical finite-element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone–hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering. Acta Biomater 8:3138–3143. https://doi.org/10.1016/j.actbio.2012.04.022

    Article  Google Scholar 

  32. Chen Q, Guillemot G, Gandin C-A, Bellet M (2017) Three-dimensional finite element thermomechanical modeling of additive manufacturing by selective laser melting for ceramic materials. Addit Manuf 16:124–137. https://doi.org/10.1016/j.addma.2017.02.005

    Article  Google Scholar 

  33. Gajera HM, Dave KG (2018) Experimental investigation and optimization of direct metal laser sintering process for shrinkage rate using CL50WS material. Mater Today Proc 5:19126–19135. https://doi.org/10.1016/j.matpr.2018.06.266

    Article  Google Scholar 

  34. Fotovvati B, Asadi E (2019) Size effects on geometrical accuracy for additive manufacturing of Ti-6Al-4V ELI parts. Int J Adv Manuf Technol 104:2951–2959. https://doi.org/10.1007/s00170-019-04184-1

    Article  Google Scholar 

  35. Yu T, Zhang Z, Liu Q, Kuliiev R, Orlovskaya N, Wu D (2020) Extrusion-based additive manufacturing of yttria-partially-stabilized zirconia ceramics. Ceram Int 46:5020–5027. https://doi.org/10.1016/j.ceramint.2019.10.245

    Article  Google Scholar 

  36. Sánchez E, García-Ten J, Sanz V, Moreno A (2010) Porcelain tile: almost 30 years of steady scientific-technological evolution. Ceram Int 36:831–845. https://doi.org/10.1016/j.ceramint.2009.11.016

    Article  Google Scholar 

  37. Martín-Márquez J, Rincón JM, Romero M (2008) Effect of firing temperature on sintering of porcelain stoneware tiles. Ceram Int 34:1867–1873. https://doi.org/10.1016/j.ceramint.2007.06.006

    Article  Google Scholar 

  38. Chartier T, Pateloup V, Chaput C (2018) Manufacturing of ceramic parts by additive manufacturing technologies. Tech l’ingénieur N4807v1:1–27

  39. Olevsky EA (1998) Theory of sintering: from discrete to continuum. Mater Sci Eng R Rep 23:41–100. https://doi.org/10.1016/S0927-796X(98)00009-6

    Article  Google Scholar 

  40. Bordia RK, Kang S-JL, Olevsky EA (2017) Current understanding and future research directions at the onset of the next century of sintering science and technology. J Am Ceram Soc 100:2314–2352. https://doi.org/10.1111/jace.14919

    Article  Google Scholar 

  41. Skorohod VV (1972) Rheological basis of the theory of sintering. Nauk Dumka, Kiev

    Google Scholar 

  42. Rahaman MN (2007) Sintering of ceramics. CRC Press

  43. German RM (1996) Sintering theory and practice. Wiley

  44. Manière C, Olevsky EA (2017) Porosity dependence of powder compaction constitutive parameters: determination based on spark plasma sintering tests. Scr Mater 141:62–66. https://doi.org/10.1016/j.scriptamat.2017.07.026

    Article  Google Scholar 

  45. Kraft T, Riedel H (2004) Numerical simulation of solid state sintering; model and application. J Eur Ceram Soc 24:345–361. https://doi.org/10.1016/S0955-2219(03)00222-X

    Article  Google Scholar 

  46. Manière C, Harnois C, Marinel S (2021) 3D printing of porcelain and finite element simulation of sintering affected by final stage pore gas pressure. Mater Today Commun 26:102063. https://doi.org/10.1016/j.mtcomm.2021.102063

    Article  Google Scholar 

Download references

Acknowledgements

The help and support of Jérôme Lecourt and Christelle Bilot is gratefully acknowledged.

Code availability

The simulation software Comsol Multiphysics 5.5 is a commercially licensed product of Comsol Corporation.

Author information

Authors and Affiliations

Authors

Contributions

Charles Manière: Conceptualization, supervision, modeling, writing; Christelle Harnois: conceptualization, review, and editing; Sylvain Marinel: Conceptualization, supervision, review, and editing.

Corresponding author

Correspondence to Charles Manière.

Ethics declarations

Consent to participate

No human or animal was involved in this work; thus, no consent was required.

Consent to publish

All authors have given their permission for publishing this work.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manière, C., Harnois, C. & Marinel, S. 3D printing of porcelain: finite element simulation of anisotropic sintering. Int J Adv Manuf Technol 116, 3263–3275 (2021). https://doi.org/10.1007/s00170-021-07304-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07304-y

Keywords

Navigation